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For a given unknown crystal structure (the target), n random structures,

arbitrarily designed without any care for their chemical consistency and usually

uncorrelated with the target, are sheltered in the same unit cell as the target

structure and submitted to the same space-group symmetry. (These are called

ancil structures.) The composite structures, whose electron densities are the sum

of the target and of the ancil electron densities, are denoted derivatives. No

observed diffraction amplitudes are available for them: in order to emphasize

their unreal nature, the term phantom is added. The paper describes the

theoretical basis by which the phantom derivative method may be used to phase

the target structure. It may be guessed that 100–300 ancil structures may be

sufficient for phasing a target structure, so that the phasing technique may be

denoted as the multiple phantom derivative method. Ancil phases and

amplitudes may be initially combined with observed target magnitudes to

estimate amplitudes and phases of the corresponding phantom derivative. From

them suitable algorithms allow one to obtain poor target phase estimates, which

are often improved by combining the indications arising from each derivative.

Probabilistic criteria are described to recognize the most reliable target phase

estimates. The method is cyclic: the target phase estimates just obtained are used

to improve amplitudes and phases of each derivative, which, in their turn, are

employed to provide better target phase estimates. The method is a fully ab

initio method, because it needs only the experimental data of the target

structure. The term derivative is maintained with reference to SIR–MIR (single

isomorphous replacement–multiple isomorphous replacement) techniques, even

if its meaning is different: therefore the reader should think of the phantom

derivative method more as a new method than as a variant of SIR–MIR

techniques. The differences are much greater than the analogies. The paper also

describes how phantom derivatives may be used for improving structure models

obtained via other ab initio or non-ab initio techniques. The method is expected

to be insensitive to the structural complexity of the target and to the target

experimental data resolution, provided it is better than 4–6 Å.

1. Introduction

The isomorphous replacement method was first applied by

W. H. Bragg to solve NaCl and KCl structures. Updated by

Robertson & Woodward (1937), the technique found a defi-

nitive formulation in the papers by Green et al. (1954) and by

Bragg & Perutz (1954). The method may be summarized as

follows: (i) the diffraction data of the structure one wants to

solve (the target structure) are collected; (ii) a new compound

(the derivative) is crystallized, in which one or more heavy

atoms are incorporated into the target structure; (iii) the

target and the derivative diffraction data are simultaneously

used to solve the target structure.

According to the theoretical basis of the method, the

derivative has to be isomorphous to the target: that is, the

incorporation of a few heavy atoms should not seriously
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disturb the target structure. If this condition is heavily

violated, the isomorphism is destroyed and the method is

useless.

The above case is reported as single isomorphous replace-

ment (SIR). More derivatives of the same target structure may

be experimentally prepared: if isomorphous with it, they will

provide useful diffraction data, the simultaneous use of which

may lead to a more straightforward solution of the target

structure. This case is denoted as the multiple isomorphous

replacement (MIR) case.

SIR and MIR techniques are usually reported in the

literature as non-ab initio phasing methods, because they need

additional measurements, supplementary to those provided by

the target structure. Their popularity has decreased over time:

indeed protein crystallographers today prefer other non-ab

initio techniques like molecular replacement (MR; Rossmann

& Blow, 1962) and anomalous dispersion techniques (SAD,

single anomalous dispersion, and MAD, multiple anomalous

dispersion). The main reasons are as follows: (i) SIR and MIR

are demanding in terms of isomorphism; furthermore,

supplementary (with respect to the target) diffraction data are

needed. (ii) MR is often preferred because model molecules

similar to that present in the target structure are increasingly

available and because supplementary diffraction data are no

longer needed. (iii) SAD–MAD are mainly used when good

MR models are not available. Anomalous dispersion data

simulate nearly perfect isomorphism and are easily collected

at synchrotrons.

Let us focus our attention on SIR–MIR methods. If n

derivatives have been submitted to a diffraction experiment,

then the set {|F|} (diffraction amplitudes of the target struc-

ture) and the n sets {|Fd (j)|}, j = 1, . . . n (diffraction ampli-

tudes of the n derivatives) are available: their prior knowledge

is the key for solving the target structure. In particular, the

heavy-atom substructures are first solved and, then, by

exploiting this supplementary information, the full target

structure may be determined. It is also implicit in the method

that the scattering power of the heavy-atom substructure is

small with respect to the scattering power of the target

structure (otherwise isomorphism is destroyed).

The main question faced in this paper, related to the above

summarized method of the isomorphous derivatives, is the

following. May the prior knowledge of a crystal structure

(called from now on an ancil structure, from the Latin ancilla),

with the same unit-cell parameters and the same space group

as the target structure, be used to solve the target structure

even if it is completely uncorrelated with the target? If the

answer to the above question is yes, one is not obliged to pick

up, from the crystallographic archives, structures satisfying

some required characteristics: any artificial structure may be

chosen as ancil. We will show in this paper that: (i) it is not

necessary that the ancil structures are real structures; much

easier is to use one or more simulated, non-realistic structures,

properly designed to satisfy specific characteristics. (ii) The

prior knowledge of more ancil structures may be used to solve

the target structure or to extend and refine phase estimates

obtained by any other phasing approach.

The method will be described in detail in the next sections;

here we summarize the guidelines and the notation.

Let �ðrÞ be the electron density of the target structure, jFj

and ’ the corresponding amplitudes and phases. The jFj’s are

known from a diffraction experiment, the ’ values are

unknown.

For any arbitrarily designed ancil structure, let �aðrÞ be its

electron density; then both jFaj and ’a, the corresponding

amplitudes and phases, are a priori known.

�dðrÞ will be the electron density of the composite structure,

here still called derivative, defined by the equation

�dðrÞ ¼ �ðrÞ þ �aðrÞ: ð1Þ

It incorporates, in the same unit cell as the target, both the

atoms of the target and the atoms of the ancil structure. It is

supposed that the two structural components are not modified

when they are part of the derivative. |Fd| and ’d will denote

amplitude and phase of the derivative structure factor, both

unknown when phasing attempts start.

The derivative, as well as the ancil structure, is not a real

structure; therefore, its diffraction amplitudes cannot be

experimentally measured. Many ancil structures may be

created and, correspondingly, many derivatives may be

obtained, all devoid of experimental data. The phasing

method described in this paper will use the experimental

diffraction amplitudes of the target structure jFj, and the

calculated diffraction amplitudes and phases of the ancil

structures jFaj and ’a, to progressively provide better and

better estimates of the amplitudes and phases of the derivative

structures. This information may be used to phase the target

structure.

Since the derivatives are not real structures, the method

described here will be called the phantom derivative method

(PhD will be its acronym): we will also distinguish between the

single phantom derivative (SPhD), only useful for describing

the main characteristics of the method, and the multiple

phantom derivative (MPhD) techniques, the suggested prac-

tical approach. PhD is here described as a fully ab initio

phasing approach because it only needs the diffraction

amplitudes of the target structure, but it may also be used for

non-ab initio purposes.

2. About the ancil structures

We stated in x1 that an ancil structure may be any artificial

structure with the same unit cell and the same space group as

the target structure. The second condition is not strictly

necessary: indeed several degrees of freedom exist, each one

presenting specific consequences. For example, the ancil space

group may be completely different from that of the target; in

this case the derivative space group is usually different from

the target and ancil space groups. That may generate practical

difficulties in the management of the reflection symmetry.

Also, a supergroup of the target group may be chosen for the

ancil, belonging to the same crystal system as the target (e.g.

the ancil symmetry may be P2=m when the target space group
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is P2). In this case the derivative and target space groups

coincide, but both are different from the ancil space group.

In general we will adopt the choice that target, ancil and

derivative space groups coincide. Since our phasing method

does not require that �aðrÞ and, therefore, �dðrÞ are chemically

sound, we will suppose that the atomic positions of each ancil

structure are randomly generated (or equivalently, the ancil

reflection phases are randomly fixed): thus the ancil structures

are completely independent of each other. However, ancil

structures related to the target may also be chosen (see

Appendix E for an example). Some practical convenience

criteria should guide the choice of the ancil structures and they

are described below.

The Fourier transform of equation (1) gives

Fd ¼ F þ Fa: ð2Þ

At the beginning of the phasing process, the values of jFdj, ’d

and ’ are unknown, while jFj, jFaj and ’a are known. Since

�aðrÞ is an arbitrary structure, the phases ’a can be supposed to

be uncorrelated with the ’’s. It is therefore impossible to

estimate the derivative amplitudes and phases by applying

equation (2). Some exceptions however may be found: one

occurs when the condition

jFaj> SpjFj ð3Þ

is satisfied, where Sp is a number sufficiently larger than unity.

In this case, in equation (2), jFj may be neglected with respect

to jFaj and

jFdj ’ jFaj; ’d ’ ’a: ð4Þ

We will denote by {P} the subset of reflections satisfying the

conditions (3); the letter P stands for directly ‘phasable’ and

suggests that derivative phases and amplitudes of reflections

satisfying (3) may be approximately known.

The other exception occurs when the condition

jFj> SujFaj ð5Þ

is satisfied, where Su is a number sufficiently larger than unity.

In this case, in equation (2), jFajmay be neglected with respect

to jFj and

jFdj ’ jFj; ’d ’ ’: ð6Þ

We will denote by {U} the subset of reflections satisfying the

condition (5); the letter U suggests that, at an initial step of the

PhD procedure, the derivative amplitudes of the {U} reflec-

tions may be approximately estimated via (6), but the corre-

sponding phases are in practice ‘undetermined’ because the

’’s are unknown at this stage.

The set of reflections not belonging to {P} or to {U} will be

denoted by {I}; their phases are in general weakly correlated

with the phases ’ or ’a. Equations (4) and (6) state that

derivative amplitudes and phases of the {P} reflections may be

carefully estimated if Sp is sufficiently large, while only the

amplitudes of the derivative reflections belonging to {U} may

be evaluated. Furthermore, no careful estimate is immediately

possible for the derivative phases of reflections belonging to

{I} and {U}. A way of determining them may be: first estimate

derivative amplitudes and phases of the reflections belonging

to {P}, and after extend the phase information to {I} and {U}

reflections. No matter which approach one may use for phase

extension, a necessary condition for the success of such a

procedure is that the number of reflections belonging to {P} is

sufficiently large. If the condition is satisfied and the proce-

dure succeeds, the gain of information obtained after the

extension process will be proportional to the number of

phased reflections belonging to {I} and {U}.

Unfortunately the conditions (3) and (5), defining {P} and

{U}, are in opposition. Indeed {P} will contain a large number

of reflections if the scattering power of the ancil structure is

chosen to be much larger than the scattering power of the

target. This choice, however, will correspondingly reduce the

number of reflections belonging to {U}: in this case the deri-

vative is dominated by the ancil, and will hardly provide useful

information on the target. On the contrary, choosing a scat-

tering power of the ancil structure that is much lower than that

of the target will make it more difficult to establish good

starting estimates for the derivative. Thus, a sensible choice,

assumed throughout this paper, may be to fix the scattering

power of the ancil structure nearly equal to that of the target

(even if in principle it may be freely chosen). Accordingly

PNa

j¼1

Z2
j ¼

PN
j¼1

Z2
j

will hold, where Na and N are the number of atoms in the unit

cells of the ancil and of the target structure, respectively, and

Zj is the atomic number of the jth atom. To better accomplish

the purpose, target and ancil unit cells may contain the same

atomic species and the same number of atoms per atomic

species. In this case Na = N, and it is then possible to associate

to the ancil atoms the average thermal factor of the target

structure as estimated via the Wilson plot. In this case

PNa

j¼1

f 2
j ’

PN
j¼1

f 2
j

will hold for any reflection, no matter the Bragg angle.

It may however be stressed that a different choice may be

made: all the scattering power of the ancil structure may be

concentrated into a few heavy atoms. No theoretical reason

thwarts this practice, and at the moment it may not be stated

which choice may be more effective.

In accordance with the above assumptions, the following

relation arises:

R ¼ jEj ¼ jFj=
P1=2; Ra ¼ jEaj ¼ jFaj=

P1=2;

Rd ¼ jEdj ¼ jFdj=ð2
P
Þ

1=2;

where R, Ra and Rd are the normalized structure-factor moduli

of target, ancil and derivative, respectively. FurthermoreP
¼ "ð

PN
j¼1 f 2

j Þ
1=2, where " is the Wilson parameter, space-

group and reflection dependent, necessary for the correct

structure-factor normalization.

It is useful to notice that, under the above assumptions, if a

pair |Fa| and |F| satisfies the relation (3) or (5), the corre-

sponding normalized amplitudes will satisfy the relations Ra >
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SpR or R > SuRa, respectively. In other words, a reflection is

associated to the subset {P}, {I} or {U} no matter if R is used

instead of |F|.

We use now the Wilson statistics to check if the amount of

phase information associated to the {P} reflections, as defined

by a given Sp value, may be sufficient for a successful phase

extension to {I} and {U} reflections.

In Appendix A we have calculated, for the centric and for

the acentric cases, and in agreement with Wilson distributions

of the amplitudes, the percentage of reflections for which Ra�

SpR. For acentric reflections we obtained

PERC1ðSpÞ ¼
1

S2
p þ 1

ð7Þ

and for centric ones

PERC�11ðSpÞ ¼
2

�
arctanð1=SpÞ: ð8Þ

The curves (7) and (8) are shown in Fig. 1. In both cases PERC

= 1 when Sp = 0 (in this case Ra � 0 for all the reflections), and

PERC = 0.5 when Sp = 1 [as expected for two uncorrelated

Wilson distributions P(Ra) and P(R), Ra > R should hold for

half the number of reflections]. Furthermore

PERC1ðSpÞ>PERC1ðSpÞ for Sp < 1;

PERC1ðSpÞ<PERC1ðSpÞ for Sp > 1:

In detail, if Sp = 3, then PERC1 is expected to be close to 0.1

and PERC1 to 0.2. In practice, it may be expected that,

correspondingly, {P} would approximately contain 0.1 or 0.2 of

the total number of the observed reflections. If we set Sp = 2,

then PERC1 is about 0.2 and PERC1 is about 0.3. Equations

similar to (7) and (8) hold also for {U} reflections. Indeed

PERC1ðSuÞ ¼
1

S2
u þ 1

ð9Þ

and

PERC1ðSuÞ ¼
2

�
arctanð1=SuÞ ð10Þ

will be the percentage of reflections for which jFj> SujFaj for

the acentric and for the centric case, respectively. Sp and Su

may in principle be different from each other. Increasing or

decreasing Sp will enlarge or diminish the number of deriva-

tive reflections with phases approximately known; increasing

or decreasing Su will increase or diminish the derivative

reflections to phase.

Equations (7) and (8) show that the number of reflections

with phase ’d ’ ’a (and therefore belonging to the set {P})

may be sufficiently large for a successful phase extension

process if Sp ’ 2.

A short additional notation may be useful. In SIR–MIR

techniques the isomorphism between native and derivative

was a basic condition for the success of the phasing procedure.

Isomorphism implies that �dðrÞ ’ �ðrÞ for most of the r points;

such a condition may be violated only in small regions of the

unit cell, as an effect of the added heavy atoms, whose number

has to be very small with respect to the number of native

protein atoms. As a necessary effect in reciprocal space, the

derivative phase is expected to be close to the native protein

phase for most of the reflections. In PhD the traditional

concept of isomorphism is absolutely superfluous. Indeed, the

ancil structure has the same scattering power as the target

structure, and therefore the condition �dðrÞ ’ �ðrÞ is severely

violated and, for a large subset of reflections, the derivative

phases are no longer expected to be close to the target phases.

That is the reason why the adjective isomorphous is not

associated with phantom derivative.

3. Estimating amplitudes and phases for a phantom
derivative

We stated in x2 that good estimates of the derivative phases

may be obtained for reflections belonging to the set {P},

provided Sp is sufficiently large. The number of such reflec-

tions has been estimated in x2 for each Sp value: we need now

to evaluate the quality of the corresponding phases. A prob-

abilistic theory assessing how probable is the relation ’d ’ ’a

is described in Appendix B [see equations (86) and (87)]. The

theory clearly indicates that the relation ’d ’ ’a is supported

for any type of reflection (no matter whether of type {P}, {I} or

{U}); the indication is stronger if Ra is sufficiently large. In this

section we want to describe a simple algebraic theory allowing

a simple management of the practical aspects.

We want to calculate the average phase error

hj’d � ’aji

between the unknown derivative phase ’d and the assigned ’a

value (’a perfectly represents the ancil phase, and is known

without error). In order to do that we consider the relationship
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Figure 1
For a pair of uncorrelated target and ancil structures PERC is the
percentage of reflections for which Ra � SpR, where Ra and R are the
normalized structure-factor amplitudes of the two structures. Sp is
allowed to vary from 0 to infinite: this last value may be attained when R =
0. In the figure the curve is reported only for Sp in the interval (0, 6).
PERC1 and PERC1 are the percentages for acentric and centric
structures, respectively.



jFdj expði’dÞ ¼ jFaj expði’aÞ þ jFj expði’Þ: ð11Þ

The maximum value of j’d � ’aj occurs (see Fig. 2) when Fd is

tangent to the circle with radius jFj and centred at the tip of

the vector Fa. Then

j sinð’d � ’aÞjmax ¼
jFj

jFaj
ð12Þ

from which

j’d � ’ajmax ¼ arcsin
1

S

with S ¼ jFaj=jFj.
It is worthwhile noticing that if |Fa| > |F | j’d � ’ajmax may

never overcome 90�.

Fig. 3 shows the trend of j’d � ’ajmax versus S: j’d � ’ajmax

strongly decreases when S increases. For S = 2 the allowed

maximum deviation of ’d from ’a is about 30�, for S = 3 the

value is 20�. Accordingly, if we associate (in the first steps of

the phasing procedure) the ’a value to ’d, 30� and 20� are the

maximum phase errors we can commit, respectively.

Let us now collectively consider the reflections belonging to

{P}, when we choose Sp = 2 (in this case we are dealing with

reflections for which Ra > 2R). For those reflections for which

exactly S = Sp (and therefore Ra = 2R) it will be j’d � ’ajmax =

30�; for the rest of the reflections (belonging to {P} but with S >

2) it will be j’d � ’ajmax < 30�. The success of a phase exten-

sion procedure (that trying to phase the reflections belonging

to {I} and {U} given the amplitudes and the phases of the

reflection belonging to {P}), more than by the maximum phase

error, is decided by the average phase error hj’d � ’aji

calculated over all the {P} reflections. Certainly hj’d � ’aji, for

a given Sp, is significantly smaller than j’d � ’ajmax calculated

at the chosen Sp value. Our first conclusion is therefore that

the derivative phases for the reflections belonging to the

subset {P} are certainly carefully estimated provided Sp > 2.

Correspondingly, the percentage of derivative reflections with

carefully estimated phase values is PERC(2) ’ 0.3 or 0.2

according to whether the space group is centric or acentric.

Let us now consider the size of the errors involved in the

approximation |Fd| ’ |Fa| as stated by the condition (3) for the

subset {P}. From the general relationship

jFdj
2
¼ jFaj

2
þ jFj2 þ 2jFaFj cosð’a � ’Þ ð13Þ

the largest and the smallest allowed values of jFdj, say jFdjmax

and jFdjmin, respectively, are jFdjmax ¼ jFaj þ jFj and

jFdjmin ¼ jFaj � jFj, the first obtained when ’ ¼ ’a and the

second when ’ ¼ ’a þ � (see Fig. 4a). Then the maximum

relative error on jFdj will be

j�jFdjj

jFdj

� �
max

¼
jFdjmax � jFdjmin

jFdjmin

¼
2jFj

jFaj � jFj
: ð14Þ

First, we notice that the maximum relative error may be very

large when jFaj ’ jFj. Second, if we assume S ¼ jFaj=jFj = 2, 3

or 4, the maximum relative error may reach 2, 1 or 2/3,

respectively, quite large indeed. Luckily this situation will

occur only when jFdj is calculated under the following

assumption: ’a is estimated close to ’ but the real relation is

’a ’ ’þ �, a condition which, for an acentric structure,

statistically happens in a relatively small percentage of cases

(’ and ’a are uncorrelated indeed). For example, let us

consider the reverse case, which also implies a � error in the

relation ’a ’ ’: it occurs when jFdj has been calculated on the

assumption ’a ’ ’þ � but the real relation is ’a ’ ’. Then

the maximum relative error for S ¼ 2; 3; 4 is

2jFj

jFaj þ jFj
¼

2

3
;

1

2
;

2

5
;

respectively. In practice the relative errors on the jFdj esti-

mates will be significantly smaller than their maxima because

the ancil structure is uncorrelated with the target structure,

and therefore there is no reason for systematically assuming,

in an acentric structure, that ’a ’ ’ or ’a ’ ’þ �.
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Figure 2
Amplitudes and phase of Fa are both a priori known. In the figure, for
simplicity, we choose ’a = 0 but it may be whichever (the figure may be
rotated if one wants to choose a different ’a value). F, the structure factor
of the target structure, has known amplitude and unknown phase. It starts
at the tip of the vector Fa and may end at any point of the circle with
radius |F|. Fd is the vectorial sum of F and Fa. In the figure F is oriented so
as to correspond to the maximum allowed values of |’d � ’a|.

Figure 3
|’d � ’a|max is the maximum phase error one can commit when the
assumption ’d ’ ’a is accepted for the subset {P}. |’d � ’a|max is drawn
versus S = |Fa|/|F|.



A general situation is described in Fig. 4(a), where the

following conditions were assumed:

jFaj> jFj; j’d � ’aj 6¼ j’d � ’ajmax and ð’d � ’aÞ 6¼ 0; �:

Then, for the chosen value of ð’d � ’aÞ, there are two possible

values of |Fd|, say |Fd1| and |Fd2|, corresponding to the vectors

OA1 and OA2, respectively (from now on, by definition, |Fd2| >

|Fd1|). Correspondingly, two possible F vectors are allowed,

denoted by F1 and F2 in the figure.

In accordance with the above observations, the amplitudes

jFaj of the {P} reflections will simulate well the amplitudes jFdj

only if Sp is very large. But choosing very large values of Sp will

diminish the number of reflections belonging to {P}, and

therefore will reduce the amount of information available for

the subsequent steps of phase extension.

In conclusion, the error on the amplitudes is more critical,

for the success of the phase-extension process, than the error

on the phases (against the common belief that phases are more

important than amplitudes). This statement may be more

easily accepted if one thinks that the information on the

interatomic distances is deposited in the diffraction ampli-

tudes which entirely define the crystal structure (see Giaco-

vazzo, 2014, where the basic postulate of structural

crystallography has been established. According to it, only one

chemically sound structure exists that is compatible with the

experimental diffraction data and therefore with the inter-

atomic distances).

There are two different ways to minimize the error on the

amplitudes. The first exploits the hypothesis that the ancil and

the target structures are uncorrelated; then hcosð’a � ’Þi is

expected to vanish and the best amplitude estimate, say jFdestj,

is readily obtained from equation (13):

jFdestj
2
¼ jFaj

2
þ jFj2: ð15Þ

Under the assumptions made in x2 the relation (15), in terms

of normalized structure factors, is equivalent to

R2
dest ¼

1

2
ðR2

a þ R2
Þ:

Equation (15) is a probabilistic relation only valid for acentric

reflections. For centric ones Fa and F are collinear: therefore,

in the absence of supplementary phase information, if |F| > |Fa|

then |Fd| may take two values, |F| + |Fa| or |F| � |Fa|, the mean

of which is |F|. If |Fa| > |F| then the allowed |Fd| values are |Fa| +

|F| or |Fa| � |F|, the average of which is |Fa|. Accordingly, the

best estimate of jFdj in the absence of phase information is |F|

if |F| > |Fa|, is |Fa| when |Fa| > |F|. In terms of normalized

amplitudes this statement is equivalent to: the best estimate of

Rd in the absence of phase information is R/21/2 if R > Ra, is

Ra/21/2 when Ra > R.

Other ways of minimizing the errors on the derivative

amplitudes and of correcting the estimates provided by

equation (15) are described in x4: since they require some

information on ’d, they are not useful in the very first PhD

step.

So far we have focused our attention on the reflections

belonging to {P}. The relation ’d ’ ’a may also be applied for

estimating the derivative phases of the reflections belonging to

{I} [see distribution (86) for the probabilistic treatment]. In

Fig. 4(b) we show a case for which |F| > |Fa|: now for a given

value of ’d there is only one feasible value of ’. The value of

’d is weakly correlated with ’a and therefore the relation

’d ’ ’a is weaker than for the set {P}.

The derivative phases of the reflections {U} are even less

correlated with the corresponding ’a values: indeed they are

strongly correlated with the unknown ’ values. The {U}

amplitudes, however, can be estimated with larger accuracy if

Su ¼ jFj=jFaj is sufficiently large (in this case jFdj is close to

the measured jFj value).

4. About the phasing potential and limits of the single
phantom derivative

Let us suppose that the procedure outlined in xx2 and 3 has

been applied. The new scenario, from the point of view of the

gained information, is the following:
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Figure 4
For drawing simplicity, ’a = 0 has been assumed. (a) Case |Fa|/|F| > 1. For a
given (’d � ’a), |Fd1| = OA1 and |Fd2| = OA2 are both allowed as
derivative amplitudes. Correspondingly F1 and F2 are both allowed as
target structure factors. (b) Case |Fa|/|F| < 1. For a given (’d � ’a) only
one |Fd| and only one target structure factor are admitted.



(i) The observed amplitudes |F| of the target structure and

the calculated amplitudes and phases (|Fa| and ’a) of the ancil

structure are known a priori.

(ii) If Sp has been chosen sufficiently large, good estimates

of the derivative phases ’d (i.e. ’d ’ ’a) for reflections

belonging to the set {P} should have been obtained, together

with rough estimates of their amplitudes as provided by

equation (15) or by the related formula for centric reflections.

(iii) Rough estimates of derivative phases and amplitudes

are available for the reflections belonging to the set {I}.

(iv) The derivative phases of the reflections belonging to

{U} are hardly estimated, but their amplitudes may be

obtained via equation (6) if Su is sufficiently large.

Owing to point (ii) it is possible, at least for reflections

belonging to the subset {P}, to approximate the derivative

structure factors by using the amplitudes (15) as derivative

amplitudes, and values ’a as derivative phases. They may

constitute the seed of a phasing process based on EDM

(electron-density modification techniques; Cowtan, 1999;

Abrahams, 1997; Abrahams & Leslie, 1996; Refaat &

Woolfson, 1993; Giacovazzo & Siliqi, 1997) procedures for

phase extension and refinement, which might lead to better

estimates of �dðrÞ: by its Fourier inversion, |Fdinv| and ’dinv may

be obtained, which, under suitable conditions, may be

considered as new supplementary estimates of jFdj and ’d, the

true derivative amplitudes and phases.

In EDM techniques a weight is associated to each reflection,

which is expected to be correlated with the reliability of the

corresponding model phase. In early times the weight was

usually calculated in accordance with Sim (1959), and essen-

tially coincides with the product 2RRcalc, where R and Rcalc are

the normalized amplitudes of the target and of the model,

respectively. Sim probabilistic treatment is based on the

assumption that the model is part of the target structure, and

that the atomic positions of the model coincide with the

atomic positions of the target. In more recent years this too

strict assumption has been abandoned (Srinivasan & Rama-

chandran, 1965; Read, 1986; Carrozzini, Cascarano, Giaco-

vazzo & Mazzone, 2013) and the weight has been modified

into I1ðXÞ=I0ðXÞ, where I1 and I0 are modified Bessel functions

of order 1 and 0, respectively,

X ¼ 2�ARRp=ð1� �
2
AÞ:

�A is a parameter taking into account the correlation factor

between model and target structure: it is expected to be close

to 0 when they are uncorrelated, and close to 1 when they are

strongly correlated.

Since the derivative amplitudes are not available, the above

�A weighting scheme cannot be applied to the derivative

structures, at least in the first PhD step. It should however be

possible to use amplitudes (15) as substitutes of the unavail-

able observed derivative amplitudes: then the {P} reflections

(eventually integrated by {I} reflections) may be used for the

calculation of the first derivative electron density, by asso-

ciating to them the phases ’d ¼ ’a. A few EDM cycles may

then be applied for extending and refining derivative phases,

by employing the weight I1ðXÞ=I0ðXÞ. This time

X ¼ 2�ARdinvRdest=ð1� �
2
AÞ

may be used, where Rdest is given by (15), and Rdinv is obtained

by Fourier inversion of the current electron-density map. Now

�A expresses the correlation between the calculated ampli-

tudes (15) and the current derivative model amplitudes. Since

amplitudes (15) are only rough approximations of the true

derivative amplitudes, in accordance with the considerations

described in x3, the EDM procedure may diverge and there-

fore should be stopped after a few cycles.

Let us suppose for a moment that ’dinv is a better estimate

of ’d than ’a. Then its value may be used for a more accurate

estimate of |Fd|. Indeed for each reflection the triangle defined

by Fa, F and Fd may be exploited, from which, by squaring

right and left sides of equation (11), the Carnot quadratic

relation

jF2
dj � 2jFdjjFaj cosð’d � ’aÞ � ðjFj

2
� jF2

a jÞ ¼ 0

may be obtained. Its allowed roots are given by

jFdj ¼ jFaj cosð’d � ’aÞ � ½jFj
2
� jFaj

2 sin2
ð’d � ’aÞ�

1=2:

ð16Þ

Since it has been supposed that ’dinv is a better approximation

of ’d, then it may be introduced at the right-hand side of

equation (16) to obtain a new estimate of |Fd|: in practice, the

relation (15) may be abandoned in favour of the following

estimate:

jFdestj ’ jFaj cosð’dinv � ’aÞ � ½jFj
2
� jFaj

2 sin2
ð’dinv � ’aÞ�

1=2:

ð17Þ

For reflections with S< 1 (they belong to the sets {I} or {U})

equation (17) will provide only one real and positive root,

corresponding to the plus sign, which may be assumed to be

the new jFdj estimate (see Fig. 4b).

For reflections for which S > 1 two real roots may be

obtained for jFdj (see Fig. 4a), say |Fd1| and |Fd2|, provided

jFj2 � jFaj
2sin2
ð’dinv � ’aÞ> 0;

or equivalently, provided

j sinð’dinv � ’aÞj< jFj=jFaj ¼ S: ð18Þ

We notice that equation (18) establishes a limit for ’dinv (and

also for ’d, even if it is unknown at this stage of the phasing

process) which cannot be overcome during EDM refinement

(see the broken line in Fig. 4a). If the EDM refinement

changes ’dinv in such a way that equation (18) is violated, then

’dinv has to be reset to satisfy the limit. It should be noticed

that the inequality (18) has an algebraic nature, not subjected

to probabilistic effects: indeed |F| and |Fa| are well known, the

first from the experiment, the second from the generated ancil

structure.

Equation (18) is a useful restraint on the admitted phases,

which thwarts EDM procedures to gradually lose the original

phase information stored in the {P} reflections. For such

reflections ’a and ’d are very close, and thus the passage from

ancil to derivative values is not an important task. The situa-

tion is quite different for {U} reflections, for which ’ and ’d are

research papers

Acta Cryst. (2015). A71, 483–512 Carmelo Giacovazzo � The phantom derivative method 489



very close to each other, but both are practically uncorrelated

with ’a. Driving their phases from ’a to ’d is quite a difficult

job: only when that is attained will passing from ’d to ’
become easy. Obtaining the derivative phases of the {I}

reflections starting from the ’a values of the {P} reflections

shows an intermediate degree of difficulty. Since {I} and {U}

subsets contain the large majority of the reflections, it is clear

that the use of the restraints (18) cannot guarantee the correct

migration of the phases from the starting ’a to the true deri-

vative values.

Indeed, why should EDM procedures be able to improve

derivative phase estimates? Certainly the average small

starting phase error of the {P} reflections might facilitate the

process. On the other hand, the incertitude on the derivative

amplitudes will make EDM procedures less efficient than in

the usual applications, where the amplitudes are experimen-

tally known. In fact, in this PhD step we are replacing the true

derivative diffraction amplitudes by the statistical estimates

(15): since the experimental amplitudes contain information

on the interatomic vectors, and these last ones define the

structure, using (15) violates a condition for successful

phasing. EDM should only succeed if an increasing number of

reflections belonging to {I} and {U} start to be well phased:

then the contribution of the target electron density to the

derivative density should progressively increase and should

drive the current derivative phase estimates closer and closer

to the true values.

Unfortunately, such hope is not well founded: the lack of

experimental diffraction amplitudes for each derivative

hinders such a virtuous phasing process, and the EDM

procedure very likely will confirm a distorted ancil structure

rather than provide a useful derivative model.

From the above considerations it may be concluded that

SPhD is probably unable to provide, via EDM techniques,

accurate derivative amplitudes and phases just starting from

an initial electron-density map based on amplitudes (15) and

phases ’a. As a consequence, it will not be possible to deduce,

from the current derivative model, accurate ’ estimates via the

probabilistic formulas which will be described in x7 and

Appendix B.

There is a supplementary mathematical reason making the

’ estimation more difficult: indeed even small errors on ’d

may transform into large errors on ’. In order to more clearly

describe this effect, let us consider, as a first example, the

reflections for which S > 1. From Fig. 4(a) it is easy to derive

the relation [demonstrated in Appendix C: see equation (89)]

jFj sinð’� ’aÞ ¼ jFdj sinð’d � ’aÞ ð19Þ

from which, using equation (16) with jFaj ¼ SjFj, the

geometrical relation

sinð’� ’aÞ ¼ sinð’d � ’aÞfS cosð’d � ’aÞ

� ½1� S2 sin2
ð’d � ’aÞ�

1=2
g ð20Þ

is derived. The plus sign in equation (20) corresponds to the

Fd2 choice, the minus sign to the Fd1 selection. It is important

to notice that equation (19) is satisfied [and therefore

sinð’� ’aÞ and sinð’d � ’aÞ have the same sign] whichever of

Fd1 or Fd2 is chosen, and whatever the ’a value is.

Equation (20) may be used to describe how wrong ð’d � ’aÞ

estimates, or wrong choices between Fd1 and Fd2, transform

into wrong ð’� ’aÞ estimates. In order to illustrate such an

effect when a wrong choice between Fd1 and Fd2 is made, we

show in Fig. 5 the case S ’ 1.48, ’a ¼ 0 and ’d = 16�: we first

assume that ’d is precisely estimated. A wrong choice between

Fd1 and Fd2 may imply a big error on the ’ estimate. Indeed,

according to equation (20), if we chose Fd2 as representative of

Fd, then ’ is estimated to be close to ’2 ’ 40�, if we chose Fd1

then ’ is expected to be close to ’1 ’ 172�. The corresponding

error attains � if ð’d � ’aÞ is close to zero and we wrongly

choose Fd, reduces to zero when ð’d � ’aÞ is close to the limit

value (in this case Fd is tangent to the Fa circle, and Fd1 and Fd2

coincide). In Fig. 5 ’2 and ’1 values corresponding to other

selected ’d angles are reported, to underline the phase

ambiguity related to the choice between Fd1 and Fd2.

Let us now again consider the case in which S ’ 1.48,

’a ¼ 0, ’d = 16�, but now we suppose that ’d is estimated with

uncertainty lying in the range (0�, 30�). If ’d is estimated to be

0� (and therefore with an error of 16�), then also ’2 is esti-

mated to be 0�, with an error of 40�. If ’d is estimated to be 35�

(and therefore with an error of 19�), then ’2 is estimated to be

87�, with an error of about 47�. It is therefore also seen that

modest errors on ’d have magnified consequences on the ’2

estimates. For the above two ’d errors ’1 takes the values 180�

and 157�, respectively (instead of the correct value 172�). It

may be concluded that ’1’s are less sensible to errors on ’d

than ’2’s.

We come now to analyse a further drawback frequently met

in SPhD, particularly critical at the beginning of the phasing

process, when ’a’s are the best phases to associate to the

derivative. As we stated before, the reflections with S > 1 have

strong constraints on the allowed values of j sinð’d � ’aÞj [see

equation (18)], while no constraint may be applied to reflec-
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Figure 5
Case S = F/Fa ’ 1.48. The Fd vectors start from O, with some selected ’d

angles. Values of of ’1 and ’2 for some selected ’d values are reported.



tions with S < 1. In both the cases, for a given reflection (hkl),

it is not rare that EDM procedures may suggest a positive sign

of sinð’d � ’aÞ while the correct sign is negative, or vice versa.

Such behaviour is also usual in any standard ab initio phasing

procedure, when target amplitudes are experimentally avail-

able and EDM procedures are applied to improve the target

model: some phases are driven in the correct direction, some

others are worsened. This behaviour is emphasized in PhD

where EDM techniques are applied to extend and improve

derivative phases in the absence of observed amplitudes.

With reference to Fig. 5 let us suppose that the EDM

process suggests ’d = �16� instead of the correct value ’d =

+16�. In this case the allowed ’ estimate should be ’2 ’ �43�

and ’1 ’ 188�. Thus, the error j�’dj = 32� may produce a

much larger error on ’2, in our case equal to j�’2j = 80� and

an error on ’1 equal to j�’1j = 16�: owing to projective laws

j�’2j will always be larger than j�’1j. It may be concluded

that a wrong estimate of the sinð’d � ’aÞ sign, as frequently

obtained at the end of an EDM procedure, may generate large

errors on the target phase estimates.

The case S < 1 may be treated along the same lines, by

remembering that the ambiguity between Fd1 and Fd2 does not

exist anymore. In practice (see Fig. 4b) the error on ’d will be

transferred to ’, and this will be particularly magnified when

’d is close to ’a.

The problem of the wrong sinð’d � ’aÞ estimates is exten-

sively treated in Appendix D, where an algorithm is also

described to reduce such critical errors.

5. The origin and the enantiomorph problem in the PhD
method

When SIR techniques are used to solve a protein structure,

isomorphous differences are employed to define the heavy-

atom substructure: then the so-gained information is used in a

second step for phasing the protein. MIR are often preferred

to SIR techniques in order to overcome the enantiomorph

ambiguity, to reduce the noise and to emphasize the signal.

Let us consider for simplicity the two isomorphous deriva-

tive case (as usual, when dealing with SIR–MIR methods, the

subscripts P, H and d will denote native, heavy-atom and

derivative structures). Since the heavy-atom binding sites in

the second derivative usually do not coincide with those of the

first one, then FH(1) 6¼ FH(2) and Fd(1) 6¼ Fd(2). Then the

system of equations

’P ¼ ’Hð1Þ þ cos�1
f½jFdð1Þj

2
� jFPj

2
� jFHð1Þj

2
�=2jFPFHð1Þjg

ð21aÞ

’P ¼ ’Hð2Þ þ cos�1
f½jFdð2Þj

2
� jFPj

2
� jFHð2Þj

2
�=2jFPFHð2Þjg

ð21bÞ

may be applied to phase the native structure. The two equa-

tions, however, may be used only if the heavy-atom positions

are referred to the same origin. If the first derivative is

considered the best one, the difference Fourier synthesis with

coefficients

½jFdð2Þj � jFPj� expði’PÞ

is calculated, where the phase angles ’P are defined according

to the first derivative: the synthesis directly provides the

heavy-atom positions of the second derivative, referred to the

same origin as the first one. In this way the two derivatives also

define the same enantiomorph for the native protein. Finally,

fixing the correct enantiomorph for the native protein is only a

problem of choosing between two alternatives. The method is

easily extended to the case in which more derivative data are

collected.

In the MPhD approach the origin problem also exists, but

with different characteristics: indeed all the atomic positions

of the ancil structures are created via random numbers

between 0 and 1, and therefore are related to the same origin.

Since the phases of each ancil structure are known, the

situation is similar to that available in the second step of the

MIR techniques, when all the heavy-atom substructures have

been determined with respect to the same origin. Now the

arbitrary generation of the ancil structures unequivocally fixes

the correct enantiomorph for each ancil. Therefore, in MPhD

an arbitrarily large number of ancil structures, perfectly

known, plays the same role as the few solved (and related to

the same origin) heavy-atom substructures in the MIR case.

However, this time, equations like (21a) and (21b) cannot be

applied because the derivative amplitudes are not measured,

and this specific characteristic creates in PhD a different type

of origin and enantiomorph ambiguity.

In SIR–MIR the derivative is physically created by adding

heavy atoms to the native protein: this condition is reflected in

reciprocal space by the relation

jFdj
2
¼ jFHj

2
þ jFPj

2
þ 2jFHFPj cosð’H � ’PÞ; ð22Þ

where ’H and ’P refer to the same origin. jFdj’s, as calculated

by equation (22), and observed derivative amplitudes will fit

quite well provided target and heavy-atom model substruc-

tures are referred to the same origin. In SIR–MIR techniques

the identification of the correct solution relies on suitable

figures of merit (e.g. on Cullis and Krout R factors and/or on

the so-called phasing power criterion) based on the fitting

between observed and calculated derivative amplitudes. Also

the most popular refinement scheme, the so-called phase

refinement (Dickerson et al., 1961; Terwilliger & Eisenberg,

1983), is based on the same fitting.

If jFdj is not measured, like in PhD, in the first step of the

phasing process we are obliged to replace the relation

jFdj
2
¼ jFaj

2
þ jF j2 þ 2jFaF j cosð’a � ’Þ ð220Þ

by (15). The identification of suitable figures of merit, as well

as the success of the phase refinement process, is then much

more difficult.

If the last term on the right-hand side of equation (220) is

cancelled [as the application of equation (15) requires], what

does that imply in direct space? The phase information is

cancelled and therefore we are using as coefficients of the first

derivative electron-density map a quantity which does not

depend on cosð’a � ’Þ, and therefore is independent of the
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possible origin shift between ancil and target structure. Using

relation (15) as a substitute of the calculated derivative

amplitude will then leave undetermined the ancil origin

among the allowed ones (Hauptman & Karle, 1956; Giaco-

vazzo, 1974). For example, in P1 the derivative amplitude (15)

is compatible with ancil structures shifted by

ð0; 0; 0Þ; ð0; 0; 1=2Þ; ð0; 1=2; 0Þ; ð1=2; 0; 0Þ;
ð1=2; 1=2; 1=2Þ; ð1=2; 1=2; 0Þ; ð1=2; 0; 1=2Þ; ð0; 1=2; 1=2Þ:

In P2 the derivative amplitudes (15) will be compatible with

ancil structures shifted along any of the twofold axes. In

conclusion, the amplitude (15) is not specific to a single deri-

vative [being devoid of the phase component present in

equation (220)], but represents the average amplitude of the

family of derivatives which may be created by shifting the ancil

origin by allowed origin translations.

An additional problem of enantiomorphism is present in

the PhD first step. Let us consider two derivative electron

densities, the first corresponding to �dðrÞ ¼ �aðrÞ þ �ðrÞ, the

second corresponding to ~��dðrÞ ¼ �aðrÞ þ �ð�rÞ: here the

enantiomorph of the target structure has been used for

obtaining ~��dðrÞ. The two derivatives are substantially different:

in the first case the derivative structure factor is FaðhÞ þ FðhÞ,

in the second case it is FaðhÞ þ Fð�hÞ. In Fig. 6 ’d and ~’’d

denote the corresponding phases: it is immediately seen that,

in general, ~’’d 6¼ ’d. Furthermore, the Fourier amplitudes for

the first derivative should be the root square of

jFdj
2
¼ jFaj

2
þ jFj2 þ 2jFaFj cosð’a � ’Þ

while those of the second derivative should be

j ~FFdj
2
¼ jFaj

2
þ jFj2 þ 2jFaFj cosð’a þ ’Þ:

FdðhÞ and ~FFdðhÞ have therefore different amplitudes. If the

jFdj’s or the j ~FFdj’s were measured, the transition from ’a to

the derivative phases should be relatively easy, owing to the

structural information contained in the measured amplitudes.

If in the PhD first phasing steps the approximation (15) is

used, then the same amplitude ðjFaj
2
þ jFj2Þ1=2 should equally

correspond to both the derivatives. In other words, the esti-

mated derivative amplitudes (15) equally represent both the

derivative �aðrÞ þ �ðrÞ and the derivative �aðrÞ þ �ð�rÞ. It is

then not surprising that, in the first step of the phasing process,

EDM procedures may drive some derivative phases from ’a

towards ’d or to ~’’d.

Luckily in MPhD the ancil phases are known with extreme

accuracy. Thus the above ambiguities on the origin and

enantiomorph, generated by the unsatisfactory amplitudes

used in the first steps of the phasing procedure, are reduced as

soon as it becomes possible to apply relationships which

estimate the derivative amplitudes as a function of ’d and ’a.

Indeed, it is then possible to replace the approximation (15) by

the better amplitude estimates given by the relation (17),

which now depends on the phase difference ð’dinv � ’aÞ. If

’dinv is a better approximation of the derivative phase then

also the amplitude |Fd| will be a more precise estimate of the

true derivative amplitude, now sensitive to the origin and to

the enantiomorph.

Even if in MPhD the derivative amplitudes are not

measured, strong constraints may be found among the various

derivatives, which may make it easier for the derivative phase

estimates to converge to the same enantiomorph and then the

crystal structure solution. In order to make an example, let us

consider a couple of derivatives, the jth and the kth. From

relation (11)

jFj expði’Þ ¼ jFdðkÞj exp½i’dðkÞ� � jFaðkÞj exp½i’aðkÞ�

¼ jFdðjÞj exp½i’dðjÞ� � jFaðjÞj exp½i’aðjÞ�

is easily derived, from which

jFdðjÞj sin ’dðjÞ ¼ jFdðkÞj sin ’dðkÞ þ jFaðjÞj sin ’aðjÞ

� jFaðkÞj sin ’aðkÞ

and

jFdðjÞj cos ’dðjÞ ¼ jFdðkÞj cos ’dðkÞ þ jFaðjÞj cos ’aðjÞ

� jFaðkÞj cos ’aðkÞ

are obtained. Then

tan ’dðjÞ ¼
jFdðkÞj sin ’dðkÞ þ jFaðjÞj sin ’aðjÞ � jFaðkÞj sin ’aðkÞ

jFdðkÞj cos ’dðkÞ þ jFaðjÞj cos ’aðjÞ � jFaðkÞj cos ’aðkÞ

¼
T

B
ð23Þ

and

jFdðjÞj ¼ ðT
2
þ B2
Þ

1=2:

It is easy to see that if FdðkÞ has been defined in modulus and

phase (eventually by choosing between Fd1 and Fd2 if the

reflection belongs to {P}), then FdðjÞ is unequivocally fixed in

modulus and phase, given the prior knowledge of ’aðjÞ. The

conclusion is not strange, even if the ancil structures k and j

are uncorrelated. Indeed, fixing FdðkÞ is sufficient to define F

in modulus and phase via equation (11): on its turn, once F has

been fixed, FdðjÞ may be estimated via the same equation (11).

In order to give a simple description of the constraints we

consider n centric ancil structures, crystallizing in a space

group which is a centric supergroup of the target space group

(e.g. in P2=m if the target group is P2). In Fig. 7, for the same
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Figure 6
Fa, F and Fd are structure factors of the ancil, target and derivative
structure, respectively. ~FFd is the derivative structure factor corresponding
to the enantiomorph of the target structure. In general ~FFd 6¼ Fd, unless
’a ¼ 0; �.



reflection (hkl), we show the diagrams for three derivatives:

|Fa| > |F | for the first two derivatives, |Fa| < |F | for the third one.

In all the three cases ’a may only take values 0 or �, while both

Fd and F will show the symmetry of the target space group: we

will assume that in the figures ’d, ’a and ’ take their true

values. Since F does not change amplitude and orientation by

changing derivative, in all the three diagrams |Fa| may vary, but

the three circles have the same radius |F|, and the vector F

maintains the same orientation. Accordingly, if in Fig. 7(a) the

orientation of F corresponds to F2, in the second diagram it

must correspond to F1: this implies a strong constraint on the

choice between F1 and F2 when two or more derivatives are

used.

In the three Figs. 7(a), 7(b), 7(c), for the chosen reflection

(hkl), the condition characterizing the correct enantiomorph is

the positive value of sin ’d (see Appendix C) but it may be

easily understood that for another reflection sin ’d < 0 may

characterize the correct enantiomorph for the three deriva-

tives. In more explicit words, if for any chosen (hkl) reflection

the three EDM procedures, independently applied to the

three derivatives, end with three phases ’d for which sin ’d > 0,

then the derivatives coherently define a phase corresponding

to the correct enantiomorph or coherently indicate a phase

corresponding to the wrong enantiomorph: one is not allowed

to decide which of the two alternatives occurs because ’ is

unknown. If the three EDM processes end with phases ’d for

which the values of sin ’d do not have the same sign, then it

may be concluded that they provide contrasting indications for

the enantiomorph. sin ’d is therefore a coherence criterion not

a tool for recognizing if the phases correspond to the correct

enantiomorph.

The above considerations, suitably modified, may be

extended to the case in which the ancil structures show the

same symmetry as the target structures. In Appendix C we

found a practical criterion for deciding if two derivatives

coherently define phase values corresponding to the same

(correct or wrong) enantiomorph for a given reflection (hkl): if

EN ¼ sinð’d � ’aÞ sin ’a has the same sign for both the deri-

vatives, it is assumed that the phases are coherently referred to

the same enantiomorph. In order to check and improve the

coherence of the phase indications provided by different

derivatives a statistical algorithm has been described in

Appendix D.

6. About the role of Rdest and Rdinv in the PhD phasing
procedure

Let us consider the following conditional distribution func-

tion, obtained by Giacovazzo & Siliqi (2002) for the SIR case:

Pð’PjRP;Rd;RH; ’HÞ ’ ½2�I0ðGÞ�
�1 exp½G cosð’P � ’HÞ�;

ð24Þ

where ’P is the phase of the native protein, and

G ¼
2ðjFdj � jFPjÞjFHj

j�sirj
2 ¼

2ðRd � RPÞRH

�2
sir

¼
2ð�isoÞnormRH

�2
sir

:

ð25Þ

In accordance with the standard notation for SIR–MIR

techniques, the subscripts P, H and d denote native, heavy-

atom and derivative structure, respectively. RP and Rd are

observed amplitudes both normalized with respect to the

native protein scattering power [i.e. RP ¼ jFPj=ð
P

P Þ
1=2 and

Rd ¼ jFdj=ð
P

P Þ
1=2, where

P
P ¼

PNP

j¼1 f 2
j , and NP is the

number of atoms in the native protein unit cell]. RH and ’H are

calculated amplitude and phase of the heavy-atom substruc-

ture, respectively, with the amplitude normalized with respect
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Figure 7
(a), (b) The case |Fa| > |F | is illustrated for ’a = 0 and ’a = �, respectively.
(c) The case |Fa| < |F | is illustrated when ’a = 0�. In all the figures the letter
F indicates the true target structure factor.



to the native protein scattering power [i.e. RH ¼

jFHj=ð
P

PÞ
1=2].

ð�isoÞnorm is the normalized version of the classical

�iso ¼ ðjFdj � jFPjÞ coefficient. �2
sir is the normalized variance

connected to the global error on the derivative, defined by

�2
sir ¼ hj�sirj

2
i=
P

P, where j�sirj expði&sirÞ represents the

cumulative error, the components of which are a lack of

isomorphism, errors in measurements and errors in the heavy-

atom substructure.

The reliability of the ’P estimate is ruled by the concen-

tration parameter G: if Rd >RP then G > 0 and ’P is expected

to be close to ’H; if Rd <RP then G < 0 and ’P is expected to

be close to ’H þ �. In both cases the phase indication is

reinforced if RH is large. According to the above definitions

the following relations are expected: hR2
Pi ¼ 1, hR2

di> 1 but

very close to unity, hR2
Hi much closer to 0 than to unity: that is

due to the small ratio ð
P

HÞ=ð
P

PÞ. The large reliability of the

estimate (24) relies therefore on the small value of �2
sir, which

is much smaller than unity for usual isomorphous derivatives,

where it is expected to be in the range 0.05–0.15 (indeed j�sirj
2

is usually a small fraction of
P

P).

A detail which will have some relevance in the next

considerations is the following: since hjFdji> hjFPji by defi-

nition, the number of reflections for which the relation

’P ’ ’H is expected to hold is a bit larger than the number for

which ’P ’ ’H þ �.

The main question of this section is: how may it be possible

to exploit relations similar to (24) in a PhD procedure, where

Rd is not measurable? In the starting PhD step the substitute

of Rd, say its statistical estimate Rdest given by equation (15),

relies on a basic assumption: that ’ is uniformly distributed on

the trigonometric circle, and that it is statistically independent

of ’a. That is in perfect agreement with the random generation

of the ancil structures. On the basis of the above considera-

tions one might conclude that the prior knowledge of ’a

cannot provide any information on ’. The following remarks

suggest a possible different conclusion:

(i) While in SIR–MIR, for a given reflection (hkl), the

difference between the amplitudes jFdj and jFj is expected to

be small (indeed isomorphism and good experimental data are

basic conditions for SIR–MIR success), in PhD the average

difference between jFdj and jFj is much larger (because of the

large scattering power of the ancil structure). Also statistically

large is the difference between jFdj and jFaj. These conditions

permit that the error with which jFdestj approximates jFdj is, in

favourable conditions, not too critical for phasing.

(ii) In some conditions Rdest, as provided by equation (15),

may be a good approximation of Rd. Let us consider three

asymptotic examples.

If F ¼ Fa then jFdestj ¼ 21=2jFaj ¼ 21=2jFj, from which R ¼

Ra and Rdest ¼ R ¼ Ra. In this case the maximum and

minimum values of Rd are 21=2R and 0, respectively. This is the

situation in which the relation Rdest ’ Rd may be severely

violated. Owing to the random distribution of ’ around ’a, Rd

may take any value in the interval (0, 21=2R) with equal

probability. Such an interval is too large to allow Rdest to be a

good approximation of Rd.

If R ¼ SRa with S sufficiently larger than unity, then

Rdest ¼ Ra½ð1þ S2Þ=2�1=2 and the maximum and minimum

values of Rd are Ra½ðSþ 1Þ=21=2� and Ra½ðS� 1Þ=21=2�,

respectively. Again, owing to the random distribution of ’
around ’a, Rd may take any value in the interval

fRa½ðSþ 1Þ=21=2�;Ra½ðS� 1Þ=21=2�g with the same probability,

but this time the amplitude of the allowed interval, say 21=2Ra,

is small if Ra is small. In conclusion, for reflections for

which R 	 Ra, Rdest ¼ Ra½ð1þ S2Þ=2�1=2
¼ ½ðR2

a þ R2Þ=2�1=2 is

a useful approximation of Rd.

A similar situation occurs when Ra ¼ SR with S sufficiently

larger than unity. Then Rdest ¼ R½ð1þ S2Þ=2�1=2 with

R½ðSþ 1Þ=21=2� and R½ðS� 1Þ=21=2� as maximum and minimum

values, respectively. Since the interval fR½ðSþ 1Þ=21=2�,

R½ðS� 1Þ=21=2�g is small if R is small, Rdest ¼ ½ðR
2
a þ R2Þ=2�1=2

may be a useful approximation of Rd for reflections for which

Ra 	 R.

(iii) In the initial PhD step one is obliged to assume that ’
and ’a are uncorrelated: then from (13) relationship (15)

arises. If some information is gained on ’d then Rdest may be

obtained from equation (17): if ’d is sufficiently accurate, then

also Rdest will gain in accuracy, particularly when R > Ra.

The above considerations allow, in favourable situations,

the use of Rdest as representative of Rd in probabilistic

formulas estimating ’ or ’d, and therefore open the door for

crystal structure solution. Furthermore, the same considera-

tions suggest that the variance, connected to the current Rdest

estimate and therefore variable with the PhD step, has to be

taken into account when probabilistic formulas, described in

x7, are applied.

In sections xx8–10 the reader will see that EDM modifica-

tion techniques play a central role in the PhD approach. By

inversion of the last electron-density map the parameters ’dinv

and Rdinv are provided: ’dinv may be considered the current

best estimate of ’d, Rdinv may be employed as a supplementary

parameter for supporting ’dinv. For example, if the EDM

cycles drive the derivative phase to ’dinv, a large value of Rdinv

may be considered a support to the relation ’d ’ ’dinv; if Rdinv

is too small the phase indication cannot be considered suffi-

ciently reliable. Both Rdinv and ’dinv may work together with

Rdest to select the reflections for which non-vanishing phase

estimates may be obtained.

7. Reciprocal-space tools for estimating derivative and
target phases

In x6 we recalled the basic probabilistic formula suggested by

Giacovazzo & Siliqi (2002) for estimating, by SIR techniques,

the native protein phase ’P given RP;Rd;RH and ’H. Such a

formula cannot be applied as it is to PhD. To find the most

suitable phasing tools we should consider the distributions

derived in Appendix B, and investigate their practical

usefulness for the PhD approach. We will divide this section

into five subsections, according to the main five phase rela-

tionships suggested in Appendix B.

Every conditional phase distribution will show a variance

term, say �2
PhD, which depends on the specific probabilistic
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formula, on the specific reflection, and on the PhD step in

which the phase is estimated. The considerations described in

Appendix B suggest that �2
PhD may attain unity and more in

the first steps of a PhD procedure, and that will severely

deplete the reliability of the estimates. In more advanced PhD

steps the variance is expected to diminish, and therefore the

accuracy of the phase estimates will improve.

7.1. The G reliability parameter

Equations (24) and (25) may be adapted to PhD by letting

Fa and F play the role of FH and FP, respectively. Furthermore

�2
sir has to be numerically reconsidered because the conditions

under which it was estimated for SIR–MIR do not hold in

PhD. The calculations reported in Appendix B indicate that,

under the hypothesis ’d ’ ’, equations (24) and (25) should

be substituted by

Pð’jR;Rdest;Ra; ’aÞ ’ ½2�I0ðGÞ�
�1 exp½G cosð’� ’aÞ� ð26Þ

and

G ¼
ðjFdestj � jFjÞjFaj

hj�PhDj
2
i

¼
ð21=2Rdest � RÞRa

�2
PhD

; ð27Þ

respectively. Distribution (26) suggests that if Rdest >R=21=2

then ’ is expected to be close to ’a; if Rdest <R=21=2 then ’ is

expected to be close to ’a þ �. The phase indication is

stronger when Ra is sufficiently large.

Owing to the basic hypothesis ’d ’ ’a the distribution

Pð’jR;Rdest;Ra; ’dÞ ’ ½2�I0ðGÞ�
�1 exp½G cosð’� ’dÞ� ð260Þ

is equally supported, sharing with (26) the same reliability G

factor. Accordingly, if Rdest >R=21=2, then ’ is expected to be

close to ’d; if Rdest <R=21=2 then ’ is expected to be close to

’d þ �. Again, the phase indication is stronger when Ra is

sufficiently large.

Equation (26) is more appealing than (260) if one considers

the fact that ’a is precisely known by hypothesis, while ’d is

only estimated. On the other hand, ’ is always closer to ’d

than to ’a by geometrical reasons (essentially because F = Fd

� Fa; see Figs. 2 or 4). Thus which of (26) or (260) should be

preferred depends on the accuracy with which ’d is estimated:

the accuracy varies with the specific reflection and with the

phasing step.

The efficiency of distribution (26) depends on the formula

by which Rdest is calculated and therefore on �2
PhD (see

Appendix B): improving Rdest diminishes �2
PhD and therefore

improves the ’ estimate. Let us now guess about the types of

reflections to which (26) or (260) may be usefully applied. The

condition ’d ’ ’ systematically occurs when R	 Ra: in this

case (see x6) Rd ’ R=21=2 and (26) and (260) do not provide

reliable phase indications for ’.

In the initial PhD step, where Rdest is estimated via equation

(15), the probability that the condition 21=2Rd >R is satisfied is

larger if Ra >R (see x6): the subcase Ra 	 R should however

not be useful because then the relation ’d ’ ’ is no longer

obeyed. Thus (26) and (260) may be usefully applied to

reflections for which Ra >R but Ra=R is not too big, otherwise

the basic hypothesis ’ ’ ’d is no longer valid.

If R>Ra, the probability of the relation ’ ’ ’d is higher

than in the preceding cases, but the phase indications (’ ’ ’a

or ’ ’ ’a þ �) will have small reliability because Rd ’ R=21=2

(see x6). Then G is expected to be small because, on average,

both the differences j21=2Rd � Rj and Ra will be small.

7.2. The SI reliability parameter

The distribution (26) relies on a basic assumption, say

’ ’ ’d. It has been underlined that this condition is often not

fulfilled in the PhD approach, because we assume that target

and ancil structures have the same scattering power. If one

assumes that target and derivative phases are not correlated,

equations (74)–(76) may be obtained and fully transferred in a

useful form as follows:

Pð’jR;Rdest;Ra; ’aÞ ’ ½2�I0ðSIÞ�
�1 exp½SI cosð’� ’aÞ�; ð28Þ

where

SI ¼ L�
RRa

�2
PhD

ð29Þ

and L is defined by

D1ðLÞ ¼ D1

21=2RdestR

�2
PhD

� �
D1

21=2RdestRa

�2
PhD

� �
: ð30aÞ

Equation (28) is more general than (26), and suggests that, if

SI > 0, then the relation ’ ’ ’a is supported, if SI < 0, then ’ is

expected to be close to ’a þ �. As should be expected, (28)

and (26) do not coincide. Indeed if (26) is used, only the

difference ð21=2Rdest � RÞ establishes whether the most prob-

able value of ’ is ’a or ’a þ �. According to (28) the phase

indication depends on a more intricate relation between R, Ra

and Rdest: at odds with equation (26), equation (28) is

symmetric with respect to R and Ra, and is highly sensitive to

the �2
PhD value, in the sense that, in some cases, for given values

of R, Ra and Rdest, distribution (28) may estimate ’ close to ’a

or to ’a þ � according to the chosen �2
PhD value. That is mainly

due to the non-linear trend of the modified Bessel functions.

A simple example showing the difference between (26) and

(28) is shown below. Let us suppose that both R and Ra are

small, so that Rdest is sufficiently small to make both the terms

D1½ð2
1=2RdestRÞ=�

2
PhD� and D1½ð2

1=2RdestRaÞ=�
2
PhD� small. Then

the approximation D1ðxÞ ’ x=2 may be used, from which

L ’ ½ðRRaR2
destÞ=�

4
PhD� and

SI ¼
RRa

�2
PhD

R2
dest

�2
PhD

� 1

� �
: ð30bÞ

While in (26) the positivity of the reliability parameter G only

depends on the difference ð21=2Rdest � RÞ, the positivity of SI

when both R and Ra are small depends on the difference

ðR2
dest=�

2
PhD � 1Þ.

Let us now guess about the type of reflections to which (28)

may be usefully applied. If both R and Ra are sufficiently small

the definition of SI given in (30b) is valid: SI is expected to be
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negative, the relation ’ ’ ’a þ � is suggested but its reliability

is small.

If both R and Ra are sufficiently large then SI is expected to

be negative. Let us suppose in addition that R and Ra have

comparable amplitudes: then Rdest is smaller than R and Ra

and SI is expected to be negative with larger reliability.

Accordingly, the relation ’ ’ ’a þ � is expected to hold for

reflections for which R and Ra are large and with similar

amplitudes. In this case however ’ and ’a are correlated,

against the founding hypothesis. That weakens the predict-

ability of the concentration parameter (29).

If R is large and Ra is small then Rdest ’ Rd ’ R. In this case

the two components of SI on the right-hand side of (29) have

comparable size and consequently SI is expected to be small.

For such reflections, as well as for the reflection for which R is

small and Ra is large [R and Ra play a symmetric role in (29)],

weak phase indications are obtained.

7.3. The SU reliability parameter

In Appendix B a third conditional phase relationship has

been derived [see equation (80)] allowing one to obtain target

phase estimates when the information on ’a does not contri-

bute to the ’ determination. It may be written down in a form

useful for a practical PhD procedure as follows:

Pð’jR;Rdest;Ra; ’destÞ ’ ½2�I0ðSUÞ�
�1 exp½SU cosð’� ’destÞ�;

ð31Þ

where

SU ¼
21=2RRdest

�2
PhD

� LU ð32aÞ

and

D1ðLUÞ ¼ D1

21=2RaRdest

�2
PhD

� �
D1

RaR

�2
PhD

� �
: ð33Þ

’dest may coincide with ’dinv as obtained by Fourier inversion

at the end of some EDM cycles or by any other better estimate

(see xx8–10).

The distribution (31) suggests that ’ ’ ’dest if SU is positive

and sufficiently large: that occurs when R and Rdest are suffi-

ciently large and Ra is sufficiently small (we are therefore

dealing with {U} reflections).

If R and Rdest are small then the two components of SU on

the right-hand side of (32a) are in conflict and the reliability of

the phase indication is vanishing. Also the case in which

Ra >R cannot be safely treated by equation (31) because ’a is

statistically correlated with ’, and therefore ’ contributes to

fix its value against the hypothesis.

Let us now guess about the type of reflections to which (31)

may be usefully applied.

If R	 Ra then the ’a value does not influence the ’ esti-

mate. In this case Rdest ’ Rd ’ R (see x6) and SU is strongly

positive. The relation ’ ’ ’d is then expected to hold even if

with a relatively small accuracy.

The subcase Ra ’ 0 deserves a special mention because R

may freely vary. The approximation D1ðxÞ ’ x=2 is perfectly

valid and (32a) reduces to

SU ¼
21=2RRdest

�2
PhD

1�
R2

a

�2
PhD

� �
; ð32bÞ

which suggests that ’ ’ ’dest is highly reliable when R is

sufficiently large.

The main problem for distribution (31) does not depend on

how Rdest approximates Rd (the approximation is quite good

when R	 Ra) but on how ’dest approximates ’d. If the

approximation is good then the ’ estimate is certainly accu-

rate.

Distribution (31) has a dynamic character: any accuracy

gain in the ’dest estimate is immediately transferred in a larger

accuracy of the ’ estimate.

The less extreme case in which R > Ra but R/Ra is not too

large can also be treated by distribution (31), but now �2
PhD is

larger and simultaneously the founding hypothesis (according

to which ’a does not contribute to define ’) is less well

satisfied. Better estimates of ’dest contribute to make this case

more useful.

7.4. The Sd reliability parameter

In Appendix B the conditional distribution

Pð’djR;Rd;Ra; ’aÞ was obtained [see equations (83)–(87)]. In

order to make it useful for PhD, we replace Rd by Rdest and we

obtain

Pð’djR;Rdest;Ra; ’aÞ ’ ½2�I0ðSdÞ�
�1 exp½Sd cosð’d � ’aÞ�;

ð34Þ

where

Sd ¼
21=2RdestRa

�2
PhD

þ Ld ð35aÞ

and L is defined by

D1ðLdÞ ¼ D1

21=2RRdest

�2
PhD

� �
D1

2RRa

�2
PhD

� �
: ð36Þ

According to distribution (34) Sd is always positive no matter

the values of R, Ra and Rdest, and therefore the relation

’d ’ ’a is always expected. That may also be deduced by using

in equation (36) the relation D1ðxÞ ’ x=2, from which

Sd ¼
RdestRa

�2
PhD

21=2
þ

R2

�2
PhD

� �
: ð35bÞ

In accordance with the above indications we assume ’d ’ ’a

at the beginning of the phasing procedure, when the phases of

the reflections belonging to the set {P} may be used to calcu-

late the first derivative electron-density map (see x8).

It may also be noticed that while R, Rdest and Ra are all

present in equation (36), only Ra and Rdest appear in the first

term of the Sd expression. Thus high values of Ra reinforce the

relation ’d ’ ’a, small values of Ra make the expectation

weaker. This behaviour gives a probabilistic basis to the

algebraic considerations described in x2, where we divided the
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observed reflections into the subsets {P}, {I} and {U} according

to the ratio jFaj=jFj.

7.5. Phasing in more advanced steps of the PhD phasing
process

Let us suppose that, at a given step of the PhD procedure,

|Fdest| and ’dest are sufficiently accurate estimates of |Fd| and

’d, respectively (we will see in the next sections that this result

cannot be attained without extensive use of MPhD). Then,

from equation (11) the following relations arise:

jFj cos ’ ’ jFdestj cos ’dest � jFaj cos ’a

and

jFj sin ’ ’ jFdestj sin ’dest � jFaj sin ’a;

from which

tan ’ ’
jFdestj sin ’dest � jFaj sin ’a

jFdestj cos ’dest � jFaj cos ’a

: ð37Þ

Equation (37) is not suitable for the initial PhD step because it

is based on the simultaneous accurate estimate of jFdestj and of

’dest: it may be very useful, however, in the late PhD steps for

refining the current phase estimates.

8. PhD real-space tools

In x4 we analysed the expected behaviour of a standard EDM

procedure, when involved in the improvement of an initial

derivative electron-density map calculated by using ampli-

tudes (15) and phases ’a of the {P} reflections: i.e. by using the

Fourier coefficients

ðjFj2 þ jFaj
2
Þ

1=2 expði’aÞ: ð38Þ

The relation ’d ’ ’a is well obeyed for {P} reflections; also the

amplitude ðjFj2 þ jFaj
2
Þ

1=2 is not too rough an approximation

of the true jFdj values. Indeed for most of the {P} reflections it

is jFdj ’ jFaj because of the weak contribution of the jFj’s to

the coefficients (38). However, if coefficients (38) are used,

negligible information on the target structure is transferred to

the EDM procedure, which therefore is expected to be unable

to drive the ancil towards the derivative phases. The proce-

dure is indeed dominated by the ancil and EDM cycles are

expected to provide a distorted ancil structure rather than a

useful derivative model.

In the first MPhD steps a hybrid electron density may be

alternatively calculated: for each jth derivative the phases ’aðjÞ

of the reflections for which jFaðjÞj>KjFj with K between 1

and 2 may be used, but now target amplitudes are associated

to them. In other words, Fourier coefficients

jFj exp½i’aðjÞ� ð39Þ

are employed, in order to respect the hybrid nature of the

derivative. The coefficients (39) are now no longer completely

dominated by the jth ancil: indeed, the amplitudes jFj are

correlated with the interatomic vector distribution of the

target structure, and may be more suitable for driving the ancil

phases closer to the target, and therefore closer to the deri-

vative phases.

It should be clear that we do not expect EDM procedures,

applied to initial density maps calculated via Fourier coeffi-

cients (39), to completely reveal the true derivative or the

target electron-density map. Indeed, even if ’aðjÞ is a good

approximation of ’dðjÞ for any j (see Fig. 3), the number of {P}

reflections is a small percentage of the number of observed

reflections (see Fig. 1); furthermore, by definition, the {P} set is

characterized by a large percentage of small jFj amplitudes.

The final electron-density map, based on such a hybrid EDM

procedure, is however expected to be capable of estimating

’dðjÞ phases with an accuracy better than that of standard

EDM procedures. This is certainly an important advantage for

some probabilistic formulas described in x7, which estimate ’
from the current ’dðjÞ values.

There is an important restraint which may be used when the

hybrid or the usual EDM procedure is applied [see equation

(18)]. In every EDM cyle and for each jth derivative the

inequality

j sin½’dðjÞ � ’aðjÞ�j<
jFj

jFaðjÞj

should be respected by any reflection with jFaðjÞj> jFj. That

avoids too large deviations of the derivative from the ancil

phases.

Let us now suppose that, for each derivative, sufficiently

good ’dðjÞ estimates become available (no matter the source

of information): then derivative electron-density maps may be

calculated via Fourier coefficients

jFdestðjÞj exp½i’dðjÞ�;

where jFdestðjÞj may be obtained by equation (15), or by

equation (16) if ’dðjÞ is known with sufficient accuracy, or also

it may be replaced by jFj as suggested by equation (39). The

corresponding density map is denoted by �destðjÞ. It may be

approximately considered as the sum of the well known ancil

structure �aðjÞ with �estðjÞ, a distorted model electron density

of the target structure contained in the jth derivative density

map but still not recognizable:

�destðjÞ ¼ �estðjÞ þ �aðjÞ:

Let us now consider the sum

�dsum ¼
Pn
j¼1

�destðjÞ ¼
Pn
j¼1

�estðjÞ þ
Pn
j¼1

�aðjÞ: ð40aÞ

The �aðjÞ maps are randomly created and therefore their sum

in equation (40a) is not expected to provide serious over-

lapping of the ancil electron densities: it will be more a

background of the �dsum map rather than a useful signal. On

the contrary, if each �destðjÞ map contains some structural

characteristics of the real target map, the electron density

corresponding to a given target structural fragment may be

present in more derivatives, the density of another fragment

may survive in other derivative maps etc. It is therefore

expected that �dsum may emphasize the real target features,

while the sum of the ancil structural features will generate the
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background of the �dsum map. In a statistical sense, the contrast

(target density)/(background density) will increase with n:

since n may be (at least in ab initio approaches) in the interval

100–300, �dsum may provide a target model much better than

that hidden in any single �estðjÞ’s.

Equation (40a) may also be rewritten as

Pn
j¼1

�estðjÞ ¼
Pn
j¼1

�destðjÞ �
Pn
j¼1

�aðjÞ ¼
Pn
j¼1

½�destðjÞ � �aðjÞ�: ð40bÞ

According to equation (40b) each difference Fourier synthesis

provides a model of the target electron density: summing the n

models, as suggested by equation (40b), would emphasize the

real structural features of the target and therefore increase the

accuracy of the resulting target model.

Equations (40a) and (40b) are equivalent from a mathe-

matical point of view but probably not in practice. Indeed,

according to equation (40a), the model is estimated via the

sum of electron densities which are supposed to be positive;

furthermore, the efficiency of �dsum relies on the necessary

correlation between the derivative and the target electron

density. According to equation (40b) the target density is

estimated via n difference electron densities which are

supposed to be negative in wide regions of the unit cell.

Refining by EDM techniques the two sum maps requires

different types of density modification and therefore the two

procedures may end with different accuracies.

To better understand the usefulness of the relations (40a)

and (40b), let us consider the Fourier transform of equation

(40b):

Pn
j¼1

FestðjÞ ¼
Pn
j¼1

FdestðjÞ �
Pn
j¼1

FaðjÞ;

where FdestðjÞ is the current derivative structure-factor esti-

mate available at a given PhD step. If FestðjÞ ¼ FdestðjÞ � FaðjÞ

is the target structure-factor estimate arising from the jth

derivative, then

hFi ¼
1

n

Xn

j¼1

FestðjÞ ¼
1

n

Xn

j¼1

FdestðjÞ �
Xn

j¼1

FaðjÞ

" #
:

hFi is the expected value of the target structure factor for a

given (hkl) reflection obtained by combining the corre-

sponding n target structure-factor estimates. Owing to the

random nature of the ancil structures, if n is sufficiently large,

the vectors FaðjÞ will be uniformly distributed on the trigo-

nometric circle, and their sum is expected to be close to zero.

Thus the sum of the n vectors FdestðjÞ will constitute an esti-

mate of the target structure factor: the reliability of the esti-

mate will increase with n and with the correlation between

derivative and target structure.

The above procedure does not have a counterpart in the

MIR case.

A final remark is necessary. The use of the function �sum is

expected to fail if �estðjÞ; j ¼ 1; . . . ; n; are estimates of � for

half the derivatives, and estimates of its enantiomorph struc-

ture � for the second half of the derivatives. The question

therefore may be more clearly expressed as follows: if the

hybrid Fourier synthesis with coefficients (39) is used to

approximate the jth derivative electron density, why should

the EDM procedure bring the derivative map towards �
instead of towards �?

In order to suggest a possible solution of the problem, let us

consider the Fourier coefficients of the hybrid synthesis. The

amplitudes jFj have the same values for the two enantiomorph

structures and, therefore, if singly considered, they cannot

influence which of the two enantiomorphs will be preferred by

the EDM procedure.

Let us now consider the phase component ’aðjÞ. A

reasonable assumption, suggested by the random creation of

the ancil structures, is that for a given jth ancil structure, ’aðjÞ

is uniformly distributed around the corresponding ’ value, so

that the expected value of j’aðjÞ � ’j is �=2. Obviously ’aðjÞ is

expected to be uniformly distributed also around �’, so that

hj’aðjÞ þ ’ji ’ �=2. Thus, according to the above hypotheses,

if only the ’aðjÞ’s are considered, there is no theoretical reason

for assessing that the EDM procedure would drive the deri-

vative phases towards � rather than towards ���.

Let us now consider all together ’aðjÞ, R and RdestðjÞ, and let

us assume that a phase relationship is available establishing

that ’ ’ ’aðjÞ. If ’aðjÞ = 50�, the phase relationship will indi-

cate ’ ’ 50� while ’ ’�50� is not suggested. The use of more

derivatives is expected to reinforce the correct enantiomorph

characterization of the target structure, provided the phase

relationships have sufficient reliability. In conclusion, if the

phase estimates are a bit better than random, the correct

enantiomorph � will be slightly preferred by the EDM

procedure, so that more than half of the n derivatives will

suggest ’ values closer to the correct than to the false deri-

vative.

9. Phasing Step 1: first target phase estimates and first
attempts for overcoming the enantiomorph problem

Let us suppose that n different ancil structures were created

with electron density �aiðrÞ, i = 1, . . . , n: jFaðiÞj and ’aðiÞ are

the corresponding calculated amplitudes and phases for a

given structure factor. jFdðiÞj and ’dðiÞ will be the corre-

sponding true amplitudes and phases for the ith derivative

structure factor. The new scenario, after the analysis described

in xx4–8, is the following:

(a) For the same target structure (|F| and ’ will again denote

amplitude and phase of the target reflection), n different sets

{P}i, {U}i and {I}i are available, defined by the following

conditions:

Set {P}i: jFaðiÞj> SpjF j;

Set {U}i: jFj> SujFaðiÞj;

Set {I}i: includes all the reflections not belonging to {P}i or

{U}i.

Sp and the Su values may also be different for different

ancils: we will assume for simplicity that Sp and Su are the

same for all the ancils.

(b) Since the n ancil structures are supposed to be uncor-

related, the sets of reflections satisfying jFaðiÞj> SpjFj or

jFj> SujFaðiÞj for the ith ancil structure usually do not coin-
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cide with the sets of reflections for which jFaðjÞj> SpjF j or

jFj> SujFaðjÞj when i 6¼ j. Thus a given reflection (hkl) may

belong to {P}i for the ith derivative, to {U}j for the jth deri-

vative and to {I}k for the kth derivative.

(c) The derivative phases for reflections for which

jFaðiÞj> jFj are confined in a range around ’ai, the restraint

being very sharp for high values of S. The difficult choice

between Fd1 and Fd2 is a strong source of error for the ’
estimate: even if the choice is correctly made, a small error on

’dðiÞmay be responsible for large errors on ’ [see x4, equation

(20) and its consequences].

Furthermore, EDM procedures applied to derivative data

often suggest positive sinð’d � ’aÞ estimates, while the correct

values are negative, or vice versa. For each (hkl) this is the

problem of the enantiomorph identification of ’dðiÞ with

respect to ’aðiÞ for each ith derivative.

In order to break down the enantiomorph ambiguity and

complete the full target phasing pathway, three conditions are

necessary:

(i) The prior phase information available for each jth ancil

structure should be safely transferred into derivative phase

and amplitude estimates of the corresponding jth derivative,

{I}j and {U}j reflections included.

(ii) All the derivative enantiomorphs should progressively

converge to the same enantiomorph. As we observed, that

requires a preliminary step: the percentage of reflections with

derivative phase compatible with one enantiomorph during

the EDM process should progressively become larger during

the EDM process. That implies the use of derivative phase and

amplitudes progressively better than the ’aðjÞ’s and ampli-

tudes (15), respectively.

(iii) The gained information on derivative amplitudes and

phases is progressively transferred into better ’ estimates.

Only if the above conditions are satisfied may the combined

use of phantom derivatives lead to the crystal structure solu-

tion of the target structure. We will show in this and in the next

section how the above conditions may be satisfied. In the next

paragraph the very first step of the phasing process is

described.

In accordance with the distribution (34) the approximation

’dðjÞ ’ ’aðjÞ is initially accepted for any jth derivative and for

any (hkl) reflection: thus distributions (26) or (28) may be

immediately used for the first target phase estimates.. As

described in x7 such an approximation is well satisfied for the

reflections belonging to the subset {P}, while it is too rough for

{I} or {U} reflections. Then the mixed Fourier synthesis with

coefficients defined by equation (39) may be calculated for

each jth derivative: phase refinement and extension may be

performed by EDM cycles. The Fourier inversion of the last

derivative electron-density map is expected to provide esti-

mates of the derivative phases [i.e. ’destðjÞ ¼ ’dinvðjÞ] better

than the initial ones [i.e. ’destðjÞ ¼ ’aðjÞ] at least for {I} and {U}

reflections.

During each EDM cycle the important restraint (12) is

applied to all the reflections with jFaðjÞj> jFj: if in some EDM

cycles j sinð’dinvðjÞ � ’aðjÞÞj> jFj=jFaðjÞj then ’dinvðjÞ is reset so

as to satisfy equation (12).

It is now possible, for each (hkl) reflection and from each jth

derivative, to obtain a ’ estimate via equations (26), (28) or

(31), by exploiting the corresponding observed amplitude R,

the calculated amplitude RaðjÞ, the RdestðjÞ value calculated via

equation (15), and the calculated phase angle ’dinvðjÞ obtained

at the end of the EDM cycles. Accordingly, a large number of

’ estimates may be available for the same ’hkl.

The reader, however, should not conclude that 3n ’ esti-

mates will be available for each (hkl): indeed for the jth

derivative the chosen (hkl) reflection may belong to the subset

{P} and therefore may be usefully estimated by equation (26),

but not via the distribution (31), which is more suitable for

estimating the target phase of the {U} reflections. It may also

occur that ’hkl cannot be estimated by any of the distributions

(26), (28) or (31) with sufficient probability to be included in

next calculations.

In spite of the above limitations one might think that this

approach overdetermines ’ if n is sufficiently large: unfortu-

nately the situation is different. Indeed, as described before,

the Rd(j) are not experimentally available for any j, �2
PhDðjÞ is

correspondingly large and therefore all the estimates are

expected to be only a little better than random. The estimates

may also show a large variability; for some ancil structures the

average phase error may be significantly smaller than 90�, and

for others significantly larger. Indeed the enantiomorph

problem described in xx5 and 6 is a severe obstacle to an

accurate target phasing: some derivatives may converge

towards �ðrÞ and some others towards �ð�rÞ.

An acceptable ’ phasing may only be obtained by

combining all the available different estimates: luckily target

phase indications originating from different derivatives may

be considered statistically independent, because the ancil

structures are randomly created. In order to accomplish this

task, let us first consider the problem from the MIR point of

view. In order to combine the phase indications arising from n

different (known) heavy-atom substructures and from the

measured derivative amplitudes, Giacovazzo & Siliqi (2002)

derived the conditional probability distribution

P ’PjRP; RdðjÞ;RHðjÞ; ’HðjÞ
� �� �

’ ½2�I0ð�PÞ�
�1 exp½�P cosð’P � �PÞ�; ð41Þ

where

tan �P ¼

Pn
j¼1 GPðjÞ sin ’HðjÞPn
j¼1 GPðjÞ cos ’HðjÞ

¼
TP

BP

;

GPðjÞ ¼
2½RdðjÞ � RP�RHðjÞ

�2
sirðjÞ

and

�P ¼ ðT
2
P þ B2

PÞ
1=2:

The necessary conditions for the validity of equation (41) are

(see x7): (i) ’P ’ ’dðjÞ; j ¼ 1; . . . ; n; and (ii) RdðjÞ, j ¼ 1; . . . ; n

experimentally known.

Equation (41) cannot be adapted to MPhD without signif-

icant limitations. Indeed the condition (i) is only valid for
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reflections belonging to the {U}j subsets. Condition (ii) is not

verified (Rd’s may only be estimated): accordingly �2
PhDðjÞ

should replace �2
sirðjÞ. For PhD equation (41) transforms into

P ’jR; RdestðjÞ;RaðjÞ; ’aðjÞ
� �� �

’ ½2�I0ð�Þ�
�1 exp½� cosð’� �initÞ� ð42Þ

where

tan �init ¼

Pn
j¼1 GðjÞ sin ’aðjÞPn
j¼1 GðjÞ cos ’aðjÞ

¼
TG

BG

; ð43aÞ

Gj ¼
½21=2RdestðjÞ � R�RaðjÞ

�2
PhDðjÞ

and

�G ¼ ðT
2
G þ B2

GÞ
1=2: ð44Þ

�init is the most probable value for ’ and �G is its reliability

parameter. At a first approximation it may be assumed that

�2
PhDðjÞ does not vary with j, because all the ancils are

randomly generated. However, in accordance with x6 �2
PhD

should vary with (hkl).

Since the distribution (42) is based on the assumption that

’dðjÞ ’ ’, equation (43a) may also be replaced by

tan �init ¼

Pn
j¼1 GðjÞ sin ’destðjÞPn
j¼1 GðjÞ cos ’destðjÞ

¼
TG

BG

: ð43bÞ

Owing to the fact that the condition ’dinvðjÞ ’ ’aðjÞ is not

obeyed for reflections {I}j or {U}j, equations (42)–(44) cannot

be applied to them. To derive probability distributions valid

for such a type of reflection distribution (28) should be

invoked and suitably modified to fit MPhD conditions. We

obtain

tan �init ¼

Pn
j¼1 SðjÞ sin ’aðjÞPn
j¼1 SðjÞ cos ’aðjÞ

¼
TS

BS

; ð45Þ

where each SðjÞ is defined by equation (39). Again

�L ¼ ðT
2
S þ B2

SÞ
1=2

ð46Þ

is the reliability factor of the phase estimate.

The third conditional distribution for estimating target

phases is given by equation (31): it may be invoked when it is

supposed that the phase ’a does not contribute to the estimate

of ’. Then

tan �init ¼

Pn
j¼1 SUðjÞ sin ’destðjÞPn
j¼1 SUðjÞ cos ’destðjÞ

¼
TU

BU

; ð47Þ

where each SUðjÞ is given by equation (32a) and

�U ¼ ðT
2
U þ B2

UÞ
1=2

is the reliability parameter of the target phase estimate.

In practical applications the estimates �init are not sepa-

rately obtained via equations (43a) or (45) or (47). Indeed, as

stated before, the same reflection (hkl) may belong to the

subset {P}i for the ith derivative, to {U}j for the jth derivative

and to {I}k for the kth derivative: accordingly, sometimes ’hkl

may be estimated via the G parameter, other times via the S or

the SU parameters. Therefore a more realistic mathematical

representation of the formula estimating ’ is given by

tan �init ¼

Pm
j¼1 �ðjÞ sin ’�ðjÞPm
j¼1 �ðjÞ cos ’�ðjÞ

¼
T�

B�

ð48Þ

with

�� ¼ ðT
2
� þ B2

�Þ
1=2

as the corresponding reliability parameter.

�ðjÞ will coincide with G(j), S(j) or SUðjÞ according to which

among equations (43a), (45) or (47) has been used for deriving

the ’ estimate from the jth derivative. ’�ðjÞ represents ’aðjÞ if

equations (43a) or (45) are used, represents ’destðjÞ if equation

(47) is employed. m is the total number of phase relationships

really used in practice for estimating the given target phase.

It may now be expected that, by application of equation

(48), a sufficient number of target reflections may be estimated

with accuracy better than random. The target electron density

should then be computed and submitted to EDM procedures.

However, phase refinement and extension are expected to

succeed only if the average target phase error is sufficiently

small, but at this stage the condition may be verified only for

small structures. Further steps are therefore necessary to allow

PhD to succeed.

10. Second and subsequent PhD phasing steps

At the end of Step 1 the phase estimates �init, obtained via

equations (42)–(48), are available for a given subset of target

reflections: �init is expected to estimate the target phase with an

accuracy better than random. From them it is easy to obtain,

for any reflection (hkl), new derivative amplitude and phase

estimates via the relation

jFdsðjÞj exp½i’dsðjÞ� ¼ jFaðjÞj exp½i’aðjÞ� þ jFj expði�initÞ;

j ¼ 1; . . . ; n; ð49Þ

from which

jFdsðjÞj
2
¼ jFaðjÞj

2
þ jFj2 þ 2jFFaðjÞj cos½�init � ’aðjÞ� ð50Þ

and

tan ’dsðjÞ ¼
jFaðjÞj sin ’aðjÞ þ jFj sin �init

jFaðjÞj cos ’aðjÞ þ jFj cos �init

ð51Þ

are derived. Since ’aðjÞ for any j value is known without

ambiguity, and since the amplitudes jFaðjÞj and jFj on the

right-hand side of equation (51) are precisely known, the

accuracy of the phase relationship ’dsðjÞ ’ ’dðjÞ will only

depend on the �init reliability. We can therefore associate to all

the new estimates ’dsðjÞ; j ¼ 1; . . . ; n, the same weight D1(��)

calculated for �init. Since a reasonable weight is now available

for each ’dsðjÞ, only the most reliable derivative phase esti-

mates may be used for the next steps of the phasing process. It

is worthwhile noticing that, if by chance or by science �init is an

accurate estimate of the target phase, then both jFdsðjÞj and

’dsðjÞ are accurately estimated.
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Obviously, in accordance with relation (18), for reflections

for which RaðjÞ=R> 1 the inequality

j sin½’dsðjÞ � ’aðjÞ�j 
 R=RaðjÞ

should be satisfied. If ’dsðjÞ does not satisfy such a constraint, it

should be reset to a value satisfying the inequality. That also

involves a corresponding back-correction on the �init estimate.

The real advantages of equation (51) with respect to the

estimates available at the beginning of Step 1 are the

following. The relation ’dðjÞ ’ ’dsðjÞ is expected to be more

reliable than the relation ’dðjÞ ’ ’aðjÞ available at the begin-

ning of the PhD phasing procedure. This expectation is based

on the following observation. Let us consider FdðjÞ and FaðjÞ as

vectors with fixed amplitudes and phases, and let us assume

that ’aðjÞ is known while ’dðjÞ remains unknown. Then ’ will

be randomly distributed on the trigonometric circle and the

application of equation (51) cannot provide phase estimates

better than ’dsðjÞ ’ ’aðjÞ. If some information on ’ is avail-

able, such as that provided by equations (42)–(48), the random

nature of ’ is reduced and equation (51) is expected to provide

the more accurate prediction ’dðjÞ ’ ’dsðjÞ.

Furthermore, while at the beginning of Step 1 for each jth

derivative, only derivative phase estimates for the reflections

{P}j were available through the relation ’destðjÞ ¼ ’aðjÞ, now

equation (51) is also extended to reflections {I}j and {U}j.

However, for reflections with large ratios RaðjÞ=R, the original

relation ’dðjÞ ’ ’aðjÞ may be restated owing to its large

accuracy. Finally, it may be concluded that, according to the

probabilistic approach so far described, estimates jFdsðjÞj and

’dsðjÞ of the derivative amplitudes and phases are available

which are more useful than those obtained when Step 1

started.

As soon as jFdsðjÞj and ’dsðjÞ are obtained for each deriva-

tive, the new phases may be used to start an EDM procedure,

where for each jth derivative, the hybrid Fourier synthesis with

coefficients (see x8)

jFj exp½i’dsðjÞ�

may be used. Unlike in Step 1, where only {P} reflections were

used for calculating the first derivative density map, in this

second step an enlarged set of phased reflections is available

belonging to the subsets {P}, {I} and {U}, so making the full

EDM procedure more effective. At the end of the EDM

cycles, each cycle performed under the restraint (18), �destðjÞ is

available for each j.

A last point deserves to be clarified. In this Step 2, where

the �init estimates of the target phases are available, all the

derivative phase estimates corresponding to the same (hkl)

reflection are consistent with the same enantiomorph choice

because they are constructed via equations (49)–(51), that is

by using the same �init value. Therefore, for a given reflection

(hkl) the choice may be correct for all the derivatives or wrong

for all of them. The increased derivative phase accuracy

gained via equations (49)–(51) will make the correct enan-

tiomorph definition easier.

Let us now assume that the procedure just described has

been applied to all the n derivatives: then n final electron-

density maps �destðjÞ; j ¼ 1; . . . ; n; are accessible, which may

be summed to obtain the map �dsum defined by equation (40a).

As described in x7, �dsum should emphasize the target features

present in the various �destðjÞ and, simultaneously, the various

ancil structural features present in them are expected to be

confined to the background. The Fourier inversion of �dsum

will produce new ’ estimates, to which equations (49)–(51)

may be applied for obtaining the corresponding jFdsðjÞj and

’dsðjÞ estimates. The four-step procedure

½jFdsðjÞj; ’dsðjÞ� !
Pn
j¼1

�destðjÞ ! �dsum ! ’
� �

! ½jFdsðjÞj; ’dsðjÞ� ð52Þ

may become cyclic. At the end, jFdinvðjÞj and ’dinvðjÞ values will

be produced which are expected to be improved approxima-

tions of |Fd(j)| and ’dðjÞ.

An analogous cyclic procedure may be applied if, instead of

calculating �dsum, use is made of the sum of the difference

electron densities (40b). Such a sum will provide, by Fourier

inversion, better ’ estimates which, on their turn, will be used

to generate better derivative structure-factor estimates.

’dinvðjÞ should be the best current estimate of the jth deri-

vative phase. jFdinvðjÞj may or may not be the best estimate of

jFdðjÞj, depending on the quality of the current jth derivative

model. Indeed, when good estimates of ’dinvðjÞ are available,

better estimates of jFdðjÞj may be obtained via equation (17).

We will again denote by jFdestðjÞj the best approximation of

jFdðjÞj and we will describe how the jFdestðjÞj’s and the ’dinvðjÞ’s

may be used for a new ’ estimate. That can essentially be done

in two different ways.

If RdestðjÞ and ’dinvðjÞ values are supposed to be still inac-

curate estimates of the true derivative amplitude and phase,

then equations (43a), (45) or (47) may be applied. The only

difference with Step 1 is that now the new RdestðjÞ and ’dinvðjÞ

are expected to be closer to the true derivative amplitudes and

phases, and therefore they are potentially able to improve the

�init estimates obtained at the end of Step 1.

If the RdestðjÞ and ’dinvðjÞ are assumed to be reliable

approximations of RdðjÞ and ’dðjÞ, then the distribution (see

Appendix B)

P½’jR;RdestðjÞ;RaðjÞ; ’aðjÞ; ’dinvðjÞ�

’ ½2�I0ðXÞ�
�1 expfX cos½’� 	ðjÞ�g ð53Þ

may be used, for which the most probable value of ’ is 	ðjÞ,
given by

tan 	ðjÞ ¼
RdestðjÞ sin ’dinvðjÞ � RaðjÞ sin ’aðjÞ

RdestðjÞ cos ’dinvðjÞ � RaðjÞ cos ’aðjÞ
: ð54Þ

The parameter

XðjÞ ¼ 2RfR2
destðjÞ þ R2

aðjÞ þ 2RdestðjÞRaðjÞ

� cos½’dinvðjÞ � ’aðjÞ�g
1=2

ð55Þ

is its reliability factor. The relations (53)–(55) fully exploit the

prior available information and are expected to provide more

sensitive ’ estimates.
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Luckily, in the MPhD approach the indications arising from

a large number of derivatives may be combined: we obtain as

target phase estimate

tan 	ov ¼

Pn
j¼1 RdestðjÞ sin ’dinvðjÞ � RaðjÞ sin ’aðjÞPn

j¼1 RdestðjÞ cos ’dinvðjÞ � RaðjÞ cos ’aðjÞ
¼

Tov

Bov

;

ð56Þ

with reliability factor equal to

�ov ¼ ðT
2
ov þ B2

ovÞ
1=2:

The generalization of Step 2 into Step i with i > 2 is now

obvious.

11. The multiple phantom derivative method as non-
ab initio technique

Ab initio phasing methods, even designed to drive random

phases towards the correct ones, are often useful for

improving the phases obtained by other methods, no matter if

ab initio or non-ab initio. For example, this is the case of the

VLD (Vive la Difference) approach (Burla, Giacovazzo &

Polidori, 2011; Burla, Carrozzini et al., 2011) which may be

employed, together with EDM techniques, to extend and

refine phases obtained by MR methods (Carrozzini,

Cascarano, Comunale et al., 2013).

Let us suppose that a phasing process (e.g. MR, SIR–MIR,

SAD–MAD or any ab initio technique) has been undertaken

for phasing a given target structure, and that the method

provides a model structure, with electron density �M(r), from

which it is difficult to recover the target structure. Such diffi-

culties mainly arise from:

(i) A too rough model. In MR that usually occurs when the

sequence identity between target and model molecule is too

low, in SIR–MIR when there is a severe lack of isomorphism

between derivatives and native protein, in SAD–MAD when

the ratio anomalous signal/noise is too small.

(ii) Too low resolution of the data phased via MR, SIR–

MIR or SAD–MAD. Then the phase extension to the higher

native protein resolution may be difficult.

(iii) If an ab initio approach is used, it is not rare, for

structure sizes overcoming 250 non-H atoms in the asymmetric

unit, that a rough model is obtained which cannot be refined

by standard techniques.

In all the above cases PhD is potentially able to add

information supplementary to that contained in the experi-

mental data. It is that provided by the calculated data of tens

or hundreds of ancil and derivative structures. All the addi-

tional data may be computed up to the native data resolution,

and therefore the limitations (ii) are overcome.

Let us now consider how PhD, working in reciprocal space,

may help when a too rough model is available [points (i) and

(iii)]. Let |F| and ’ be modulus and phase of the target

reflection (hkl), |FM| and ’M be modulus and phase of the best

model electron density �M(r), no matter if derived from a

molecular model or by inversion of an electron-density map.

Then n ancil structures are created with the same character-

istics described in the preceding sections: from them the values

of structure factors FdM(j) may be obtained, where

FdMðjÞ ¼ FM þ FaðjÞ; j ¼ 1; . . . ; n: ð57Þ

From equation (57) the following phase and amplitudes arise:

tan ’dMðjÞ ¼
jFMj sin ’M þ jFaðjÞj sin ’aðjÞ

jFMj cos ’M þ jFaðjÞj cos ’aðjÞ
¼

TM

BM

ð58Þ

and

jFdMðjÞj
2
¼ T2

M þ B2
M

¼ jFMj
2
þ jFaðjÞj

2
þ 2jFMjjFaðjÞj cos½’M � ’aðjÞ�:

FdMðjÞ is the estimated structure factor corresponding to the

jth derivative electron density �M(r) + �aj(r).

When a model is available there are three strong advan-

tages with respect to the ab initio case:

(i) The problem of fixing the correct enantiomorph of the

jth derivative phases with respect to the ’aðjÞ’s is not usually

present (unless the model is centric while the target is acen-

tric).

(ii) The amplitudes jFdMðjÞj are better estimates of the true

derivative amplitudes than the amplitudes (15), which are the

obliged choice when no model is available. That makes PhD

convergence faster.

(iii) While in ab initio PhD applications ’aðjÞ’s are the best

phase estimates for the jth derivative (and therefore are

sufficiently accurate only for {P} reflections), now better esti-

mates [say ’dMðjÞ] are available for all the measured target

reflections. Thus Step 1 described in x9 may be skipped: indeed

jFdMðjÞj and ’dMðjÞ play for non-ab initio phasing attempts

the same role played by jFdnðjÞj and ’dnðjÞ in the ab initio

phasing procedures [see equations (49)–(51)]. Accordingly,

non-ab initio phasing may follow the approach described in

x10.

In addition, direct-space methods like those described in x8

may also be used. If a model structure �M is available from

another phasing technique, then n derivative model electron

densities

�dMðjÞ ¼ �M þ �aðjÞ; j ¼ 1; . . . ; n;

may be calculated, which may after be submitted to EDM

procedures. As described in x8, their sum function may be

used for revealing details of the target structure not available

in the original model.

12. Conclusions

In order to make conclusive remarks about the nature of the

PhD approach, we first summarize similarities and differences

with the classical SIR–MIR techniques.

The derivative structures are obtained via soaking or co-

crystallization methods, often requiring patience and deter-

mination.

Diffraction data are collected both for the target and for the

derivative structures.
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The attachment of the heavy atoms should not be very

extensive: the number of binding sites should usually be small,

so as to generate heavy-atom substructures with scattering

powers much smaller than that of the target, so supporting the

phase relation ’ ’ ’d.

The isomorphism between the native and the derivative

structures must be sufficiently good. Usually a first control on

the isomorphism is made by checking if the unit cells of the

target and of the derivatives differ by more than 1.5–2%. A

second control is made by checking if the diffraction data

differ by more than 15–25%.

The above features locate SIR–MIR among non-ab initio

phasing methods. It is the redundancy of the experimental

information which permits the crystal structure solution, even

at resolution worse than 4–6 Å.

Let us now consider PhD. In this method the target plays

the role of the native protein and the ancil structures that of

the heavy-atom substructures. We notice:

While in SIR–MIR the heavy-atom substructures are

unknown and their solution is the first step of the phasing

procedure, in the PhD technique the ancil structures are freely

generated, may be constituted by heavy and/or light atoms

according to the fancy of the practitioner, are usually

randomly constructed, and their scattering power may be

any.

Practical aspects suggest that an ancil structure with scat-

tering power similar to that of the target may be more useful.

Accordingly, the classical crystallographic concept of

isomorphism between derivative and target structure has no

role in PhD.

Ancils constituted by heavy atoms are not necessary. It has

still to be checked if ancil structures with a few heavy atoms

with overall scattering power similar to that of the target may

be more or less useful than ancil structures with the same

target chemical composition. Furthermore, ancils constituted

by light atoms may be used even if the target structure

contains heavy atoms.

Owing to the artificial nature of the ancil structure,

symmetry and unit cell may be exactly the same for the target

and for the phantom derivative. Thus the minimum inter-

atomic distance (e.g. 1.36 Å), which has often been considered

one of the parameters necessary for crystal structure solution,

is severely violated by the phantom derivative structures.

Cascarano et al. (1992) observed that the deviations of the

Wilson plot from a straight line are connected to the inter-

atomic distances, and that the average h|F|2i, calculated at a

given Bragg angle, shows maxima which depend on the

smallest interatomic distances: i.e. such distances may be

calculated by inverse Fourier transform of the Wilson plot.

The conditions for guaranteeing a minimum interatomic

distance are not present in a phantom derivative. Indeed, in

the same unit cell of the target structure each derivative hosts

twice the number of atoms and, according to the random

nature of the ancil structures, it may frequently occur that in

the phantom derivative two atoms are nearly overlapping.

Obviously, an ancil structure may be created by hindering two

ancil atoms from being closer than a minimum distance, but it

is impossible to avoid ancil atoms overlapping or being too

close to the target atoms.

|Fd|, the structure-factor amplitude of the derivative elec-

tron density �d(r) = �(r) + �a(r), is not experimentally avail-

able, it may only be estimated: thus the redundancy of the

SIR–MIR experimental information has been lost. On the

other hand, the average differences between phantom deri-

vative amplitudes and target diffraction amplitudes are much

larger than in the SIR–MIR methods.

The enantiomorphism problem is present both in SIR–MIR

and in PhD, but its nature and the way in which it has to be

solved are different.

A large number of phantom derivatives may be used (there

is only a computing limit) in MPhD, to compensate, with

respect to MIR techniques, for the absence of observed

derivative amplitudes.

The phantom derivative technique needs only the target

diffraction amplitudes and therefore is an ab initio approach.

All the above differences suggest that PhD should be

considered an ex-novo ab initio phasing method rather than an

evolution of the SIR–MIR techniques.

So far PhD has been described as a unique solution

approach: e.g. from the available prior information on |F|, |Fa|,

’a, only one solution, wrong or correct, is provided. In prac-

tice, such representation is just a simple way to illustrate the

method: the number of obstacles in the way of succeeding is

extremely large and multi-solution techniques should be more

useful. Once the n ancil structures have been selected, the

phase estimates provided by the ancil and derivative models

may be combined in different ways: different combinations

will correspond to different phasing trials. For brevity, this

topic, of more practical character, is not discussed here, where

it seems more useful to add some supplementary observations

on the founding PhD conjecture.

It is a common belief that the knowledge of one or more

structures, completely uncorrelated with the target structure,

cannot provide any valuable information on the target struc-

ture. The phasing procedure described above rejects such a

belief. The reader is referred to two other cases where some

additional information apparently arises from nothing. The

first is the free lunch approach (Caliandro et al., 2005a,b). Non-

measured amplitudes and their corresponding phases are

extrapolated from a model structure and used to improve it.

The model may be well correlated (e.g. when obtained from

successful ab initio or non-ab initio phasing approaches), or

completely uncorrelated with the target structure (in the case

where the model is randomly generated in an ab initio

approach or obtained at a certain stage of an unsatisfactory

phasing process). In the first case the extrapolated amplitudes

and phases aim at improving the data resolution and therefore

the quality of the electron-density maps; in the second case

they may improve the efficiency of the phasing process and

make the difference between success and failure [see, for

example, the use of ‘free lunch’ made by the program SIR2011

(Burla, Caliandro et al., 2012) or by ACORN (Yao et al., 2006)

or by Usón et al. (2007)].

The second example concerns VLD. Let
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�ðrÞ; �pðrÞ and �qðrÞ

be target, model and true difference electron density,

respectively [by definition

�qðrÞ ¼ �ðrÞ � �pðrÞ;

no matter the quality of the model electron density]. It is usual

to estimate the true difference electron density by the Fourier

transform calculated via the coefficients (Read, 1986)

mhFh �DhFph;

where F and Fp are the structure factors of the target and of

the model structure, respectively, m and D are statistical

parameters related to the quality of the model.

�qðrÞ is well estimated by the Read formula only when the

quality of the model is sufficiently high; the formula is useless

for low-quality models. That agrees well with the common

belief that, when the model is uncorrelated with the target, the

difference Fourier synthesis should not provide any informa-

tion on the target structure.

More recently (Burla et al., 2010) a new difference Fourier

synthesis has been proposed which is able to provide infor-

mation on the target structure also when the model is uncor-

related with the target: the new formula coincides with the

Read formula only when the correlation is sufficiently high.

Owing to such a property, the new formula has been the main

tool for the VLD ab initio phasing approach.

The PhD method proposed here is therefore the most

radical example of exploiting model structures uncorrelated

with the target. For the first time, artificial, freely chosen

structures (the ancils), no matter if chemically sound, with or

without any control on allowed interatomic distances and

angles, sheltered in the same unit cell in which the unknown

real structure (the target) crystallizes, are used to obtain

simulated derivatives which in their turn are employed to

phase the target. As for the ancil, the derivative structures are

also not real structures, and therefore they are devoid of

experimental data. The phasing algorithms described in this

paper suggest mathematical tools for phasing the target crystal

structure from ancil structures completely uncorrelated with

the target.

But, what is the information source allowing the phasing

process to succeed? It may be identified in the positivity of the

electron density, which is exploited both by EDM cycles,

repeatedly performed in the PhD approach, and by the PhD

probabilistic formulas used for phasing target reflections.

Each jth derivative electron density satisfies the positivity

criterion: indeed the derivative is the sum of two component

structures, both positively defined, one perfectly known (the

ancil) and the other unknown (the target). Ancil phases and

amplitudes obtained by combining ancil and target amplitudes

are initially used in EDM cycles to improve, by application of

the positivity criterion, the jth derivative phases and ampli-

tudes. The ambiguous nature of the derivative, however, is a

strong obstacle to the success: indeed the natural evolution of

each starting derivative model towards the correct one is

usually difficult because there are weak reasons in favour and

strong against. The main reason against is that EDM techni-

ques have a very low efficiency owing to the fact that a basic

ingredient, the measured derivative amplitudes, is not avail-

able. The difficulty may be overcome when MPhD techniques

rather than SPhD are used, but a large number of ancil

structures are needed for success.

The estimate of the target phases may also be provided by

the probabilistic relationships exploiting the prior knowledge

of the ancil amplitudes and phases, and of the target observed

amplitudes. Such relationships are again based on the posi-

tivity of the electron density (that corresponds in reciprocal

space to the positivity of the scattering factors) and are the

PhD counterpart of the relationships designed for SIR–MIR

techniques when the heavy-atom substructures are already

known. The efficiency of SIR–MIR probabilistic relationships

is still high at resolution far from atomic (as a rule of thumb,

they may also work at 4–6 Å resolution). If the weaker nature

of the PhD phase relationships (generated by ignoring the

derivative amplitudes) is fully compensated by the large

number of phantom derivatives, it may be expected that PhD

should work up to the resolution limit at which both EDM and

SIR–MIR work. Since both provide useful information up to

4–6 Å, PhD is then expected to be an ab inito phasing method

which, for the first time in crystallographic history, may

succeed at 4–6 Å resolution, without any upper limit for the

structural complexity. If the phase information provided by

derivative amplitudes to SIR–MIR techniques is only partially

compensated by the large number of derivatives, then PhD

limits will be more strict in terms of structure complexity and

data resolution. It is impossible at the moment to foresee

which of the two cases will occur. In the first case PhD would

represent a strong discontinuity with the current phasing

methods working at non-atomic resolution. They essentially

are:

(i) Patterson techniques (Caliandro et al., 2014): they are

occasionally able to solve structures up to 2 Å resolution

provided heavy atoms are in the unit cell (a very severe

limit).

(ii) Direct methods based on a recently published prob-

abilistic formula (Burla, Carrozzini et al., 2012) estimating

triplet invariants from a model electron-density map which is

progressively created during the phasing process (Burla et al.,

2015a). Also this approach is occasionally able to solve crystal

structures up to 2 Å resolution provided heavy atoms are in

the unit cell.

(iii) Arcimboldo approach (Rodrı́guez et al., 2012). It uses

different types of prior information to locate in the unit cell

small molecular fragments supposed to be present in the target

structure. It works also at about 2 Å but does not need the

presence of heavy atoms.

The number of ancil structures, and therefore of phantom

derivatives, necessary for solving a macromolecular structure

may at the moment only be guessed: as a rule of thumb, it is

estimated at between 100 and 300 for ab initio purposes, some

tens for non-ab initio, numbers which are expected to be

independent of the structural complexity and of the experi-

mental target data resolution.
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The PhD approach described in this paper is essentially

speculative. However, we anticipate that PhD will be applied,

in its non-ab initio version, to extend phases and to refine

electron-density maps obtained by MR (Burla et al., 2015b). A

set of test structures was selected with average phase error

larger than 50�, and PhD was applied to them to improve the

quality of the model. PhD efficiency was compared with that

of other current techniques: the results showed the superior

capacity of PhD in refining phases. Such application is the first

confirmation of the founding conjecture of this paper: random

structures (say ancils) may be used to make the crystal

structure solution of a target structure completely uncorre-

lated with the ancils easier.

APPENDIX A
Let us assume that the electron densities of the target and of

the ancil structures are uncorrelated with each other. We are

interested in calculating the expected percentage of reflections

for which Ra � Sp R, where Ra is the normalized amplitude of

the ancil structure and R is the normalized diffraction ampli-

tude of the target structure. We will assume that both of them

obey the Wilson distribution P(R). Then the required

percentage coincides with

PERCðSpÞ ¼
R1
0

PðRÞ
R1

SpR

PðRaÞ dR dRa: ð59Þ

For the acentric case the right-hand side of equation (59) is

equal to

4
R1
0

R expð�R2Þ dR
R1

SpR

Ra expð�R2
aÞ dRa

" #
dR

¼ 2
R1
0

R expð�R2Þ
R1
ðSpRÞ2

expð�yÞ dy;

where y ¼ R2
a. Since

R1
u

x
�1 expð��xÞ dx ¼ ��
�ð
; �uÞ;

where � is the incomplete gamma function, and since

�ð1þ 
; uÞ ¼ 
! expð�uÞ
X

m¼0

um

m!
½
 ¼ 0; 1; . . .�;

PERCðSpÞ reduces to

2
R1
0

R exp½�ðS2
p þ 1ÞR2� dR:

Owing to the relation

Z1
0

x2nþ1 expð�px2Þ dx ¼
n!

2pnþ1

we obtain

PERCðSpÞ ¼
1

S2
p þ 1

: ð60Þ

For the centric case equation (59) becomes

PERC�11ðSpÞ ¼
2

�

Z1
0

exp �
R2

2

� � Z1
SpR

exp �
R2

a

2

� �
dRa

2
64

3
75 dR:

ð61Þ

Equation (61), after the change of variable x ¼ Ra=21=2,

becomes

PERC1ðSpÞ ¼
2

�

� �1=2Z1
0

exp �
R2

2

� �
1��

SpR

21=2

� �� 	
dR;

ð62Þ

where � is the error function defined by

�ðxÞ ¼
2

�1=2

Zx

0

expð�t2Þ dt:

Submitting equation (62) to the change of variable

z ¼ SpR=21=2 leads to

2

Spð�
1=2Þ

Z1
0

exp �
z2

S2
p

� �
½1��ðzÞ� dz:

Owing to the integral

Z1
0

expð��2x2Þ½1��ðxÞ� dx ¼
arctan�

�ð�1=2Þ

we obtain

PERC1ðSpÞ ¼
2

�
arctanð1=SpÞ: ð63Þ

We are also interested in estimating the percentage of

reflections for which R > SuRa (they constitute the set {U}).

The corresponding formulas will coincide with equations (60)

and (63) but Su will replace Sp.

APPENDIX B
This Appendix aims to provide the mathematical support to

the probabilistic formulas which may be used in the PhD

phasing approach. We will first recall some basic results

obtained for SIR–MIR techniques via the method of joint

probability distribution functions, and then we will modify

them to fit the PhD scenario.

Let EP;Ed;EH be the normalized structure factors (for

more detailed definitions see x2) of the target, derivative and

heavy-atom structure, respectively, for the classical SIR case.

The most general distribution for treating the SIR case

(Giacovazzo et al., 2004) is
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PðRP;Rd;RH; ’P; ’d; ’HÞ

’ ZRPRdRH exp
�
�½�11R2

H þ �22R2
P þ �33R2

d

þ 2�12RHRP cosð’H � ’PÞ þ 2�13RHRd cosð’d � ’HÞ

þ 2�23RPRd cosð’d � ’PÞ�
�
; ð64Þ

where Z is a scaling parameter and �ij; i; j ¼ 1; . . . ; 3 are

suitable coefficients. For the sake of simplicity we do not recall

the definitions of all the �ij’s, but only those which are useful

for our purposes:

�12 ¼
P

P

P
H

� �1=2

=hj�j2siri; ð65aÞ

�13 ¼ �
P

d

P
H

� �1=2

=hj�j2siri; ð65bÞ

�23 ¼ �
P

P

P
d

� �1=2

=hj�j2siri: ð65cÞ

From equation (64) several marginal and/or conditional

distributions may be derived. For example, PðRPjRd;RHÞ was

used by Giacovazzo (2014) for estimating the heavy-atom

substructure amplitudes given the values of Rd and RH.

Pð’PjRP;Rd; ’HÞ was used to estimate the native protein phase

when the heavy-atom substructure was already solved

(Giacovazzo & Siliqi, 2002). Owing to the constraint

Fd ¼ FP þ FH all the above distributions were useful only

because errors were associated to the observations.

In PhD derivative and target phases are more weakly

correlated than in SIR; therefore the relation ’P ’ ’d cannot

always be transferred in PhD notation as ’ ’ ’d. The relation

’P ’ ’d reduces the number of variables in SIR and, conse-

quently, the number of conditional distributions necessary to

treat it. In PhD techniques more marginal and /or conditional

distributions are therefore necessary to take into account the

specific nature of the method. Furthermore, as we will see in

this Appendix, the reliability of the phase indications arising

from them is much smaller than in SIR.

Luckily, the mathematical expressions of such distributions

clearly suggest the subsets of reflections to which the different

PhD conditional distributions should be applied with expected

non-vanishing accuracy.

Let us first recall that, in a paper dedicated to the study of

SIR–MIR techniques (Giacovazzo & Siliqi, 2002), the

following conditional joint probability distribution was

obtained:

PðRP;Rd; ’P; ’djRH; ’HÞ

’ ��2 RPRd

�2

� �
exp

n
�

1

�2
½R2

d þ R2
H � 2RdRH cosð’d � ’HÞ

þ ð1þ �2
ÞR2

P � 2RdRP cosð’d � ’PÞ

þ 2RPRH cosð’P � ’HÞ�

o
: ð66Þ

Since in PhD Ra; ’a are known by hypothesis, equation (66) is

a useful starting point for deriving analogous conditional

distributions valid in PhD. From such an adapted conditional

distribution it will be possible to derive initial estimates of ’
and ’d given the available prior information.

The following considerations are necessary for adapting

equation (66) to PhD conditions:

(i) Amplitudes and phases of the ancil structure are known

without error, but Rd’s are not measured. They may be only

estimated: e.g. the estimates may be obtained by Fourier

inversion during an EDM procedure, or, for special subsets of

reflections, by algebraic considerations (see x6). The estimates

may be largely inaccurate, particularly in the first stages of the

phasing process. As a consequence, it may be expected that

the PhD substitute of �2
sir (let us call it �2

PhD) should vary

according to the correlation between the current and the

target model.

(ii) According to point (i), in PhD, where the traditional

isomorphism concept is no longer valid, j�sirj
2 has to be

replaced by j�PhDj
2: obviously its larger size mainly depends

on the fact that jFdj is not measured. Let us first consider the

initial PhD step, where Rdest and the true Rd are very weakly

correlated. In this case Rdest and Rd may be considered as

variables independently distributed according to the Wilson

statistics. Then, for the type of ancil structures chosen in this

paper (i.e. the scattering power of the ancil equal to the

scattering power of the target), �2
PhD may be estimated as

follows:

�2
PhD ’ hðRdest � RdÞ

2
i ¼ 2� 2ðhRdestihRdiÞ ’ 0:43

for an acentric crystal and

�2
PhD ’ 2� 2ðhRdestihRdiÞ ’ 0:73

for a centric crystal, against the range (0.05–0.15) usually

covered by �2
sir. In real cases, where Rdest is obtained by Fourier

inversion of a modified electron-density map, it is not expected

to be distributed according to Wilson statistics; therefore the

variance may be larger than that estimated via the above

equations, at least in the first PhD steps.

There is a second reason responsible for an additional

increase of �2
PhD. In the conclusions (see x12) it is recalled that

the interatomic distances define the oscillations of the Wilson

plot, and that, vice versa, the smallest interatomic distances

may be estimated by inverse Fourier transform of the Wilson

plot (Cascarano et al., 1992). In real structures it is the concept

of minimal interatomic distance which leads to Wilson plots

typical of real crystal structures. In agreement with the above

statement, Morris et al. (2004) showed that Wilson plots of

proteins are very similar to each other in spite of the wide

spread of secondary structure characteristics.

In a phantom derivative the concept of minimum inter-

atomic distance has no role, so that the Wilson plot of a

phantom derivative, even if it was obtained by using the true

derivative amplitudes (instead of the amplitudes calculated by

Fourier inversion), is not expected to fit the Wilson plots of

real structures. Accordingly, the amplitude normalization

procedure of the phantom derivatives cannot be based on the

same principles used for real structures, and will lead to a

larger spread between true and calculated normalized deri-

vative amplitudes. Owing to all the above considerations it
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may be supposed that �2
PhD may also attain 1 in the first PhD

step. Such high values weaken the reliability of the probabil-

istic estimates provided by equations (66), (26), (28) or (31).

(iii) In accordance with points (i) and (ii) equation (66) may

be adapted to PhD by first applying the transformation
P

P!P
and

P
H !

P
a, and after by replacing hj�j2siri by hj�j2PhDi.

In accordance with the hypothesis
P
¼
P

a ¼ 0:5
P

d equa-

tions (65a), (65b), (65c) transform into

�12 ¼
P
=hj�j2siri ¼ 1=�2

PhD; ð67aÞ

�13 ¼ �21=2
P
=hj�j2PhDi ¼ �21=2=�2

PhD; ð67bÞ

�23 ¼ �21=2
P
=hj�j2PhDi ¼ �21=2=�2

PhD: ð67cÞ

Now we can rewrite the required conditional distribution valid

for PhD as follows:

PðR;Rd; ’; ’djRa; ’aÞ

’ C exp
n
�

1

�2
PhD

½RRa cosð’� ’aÞ � 21=2RdRa cosð’d � ’aÞ

� 21=2RdR cosð’d � ’Þ�
o
: ð68Þ

For the sake of simplicity, we do not report in equation (68)

the explicit expressions of all the terms which do not depend

on the phases, because they are not useful for our purposes: we

represent them by C.

If the parameters R;Rd;Ra; ’a; ’d are estimated with high

accuracy then the conditional distribution

Pð’jR;Rd;Ra; ’a; ’dÞ ’ ½2�I0ðXÞ�
�1 exp½X cosð’� 	Þ� ð69Þ

is obtained, where the most probable value of ’ is 	, given by

tan 	 ¼
21=2Rd sin ’d � Ra sin ’a

21=2Rd cos ’d � Ra cos ’a

; ð70Þ

and

X ¼
R

�2
PhD

½2R2
d þ R2

a � 2ð21=2
ÞRdRa cosð’d � ’aÞ�

1=2
ð71Þ

is its reliability factor. D1(X) may be the weight to associate to

the estimate 	.
Let us now suppose that ’d is unknown while R;Rd;Ra; ’a

are known with high accuracy. Then from equation (68) the

marginal distribution

PðR;Rd; ’jRa; ’aÞ

’ C exp
n
�

1

�2
PhD

½RRa cosð’� ’aÞ�

o
I0

21=2RdRdcalc

�2
PhD

� �
ð72Þ

is obtained, where

Rdcalc ¼ ½R
2
þ R2

a þ 2RRa cosð’� ’aÞ�
1=2:

Equation (72) is able to provide, via numerical methods, the

most probable value of ’, but does not immediately suggest

any immediate practical use: for this purpose it is necessary

to derive the conditional distribution Pð’jR;Rd;Ra; ’aÞ. Such

a distribution may be obtained by using the same

assumption (say ’P ’ ’d) employed by Giacovazzo & Siliqi

for deriving in the SIR case the distribution (24) from

PðRP;Rd; ’P; ’djRH; ’HÞ. By adapting such a distribution to

PhD and by assuming ’ ’ ’d equations (26) and (27) are

obtained. This is the first probabilistic result which may be

used in the phasing procedure.

The assumption ’P ’ ’d in SIR–MIR is fully justified by the

fact that the scattering power of the heavy-atom substructure

is usually negligible with respect to the protein scattering

power. The same assumption does not hold for the PhD

approach (say, ’ is no more obliged to be very close to ’d)

because �aðrÞ, the PhD substitute of �HðrÞ, may have the same

or a larger scattering power than that of the target structure:

therefore ’ and ’d are more weakly correlated.

In order to relax the assumption ’ ’ ’d we introduce into

equation (72) the following approximation (Giacovazzo,

1979):

I0½L
2
1 þ L2

2 þ 2L1L2 cosð’1 � ’2Þ�

’
I0ðL1ÞI0ðL2Þ

I0ðLÞ
exp½L cosð’1 � ’2Þ�; ð73Þ

where L is defined by the relation

D1ðLÞ ¼ D1ðL1ÞD1ðL2Þ:

We obtain

Pð’jR;Rd;Ra; ’aÞ ’ ½2�I0ðSIÞ�
�1 exp½SI cosð’� ’aÞ�; ð74Þ

where

SI ¼ L�
RRa

�2
PhD

ð75Þ

and L is defined by

D1ðLÞ ¼ D1

21=2RdR

�2
PhD

� �
D1

21=2RdRa

�2
PhD

� �
: ð76Þ

Equations (73)–(76) constitute the second tool for estimating

the target phases.

There is a third way of estimating target phases. Let us

suppose that ’d and ’ are weakly correlated and that we want

to estimate ’ from equation (68) when ’a is integrated over all

possible values. In this case the ’a value should not influence

the value of ’ so much, as occurs when Ra � R. The inte-

gration leads to

PðR;Rd;Ra; ’; ’dÞ

’ C exp
21=2

�2
PhD

RRd cosð’d � ’Þ

� 	
I0

RaRacalc

�2
PhD

� �
; ð77Þ

where

Racalc ¼ ½2R2
d þ R2

� 2ð21=2
ÞRRd cosð’d � ’Þ�

1=2:

In order to derive the conditional distribution of ’ we expand

the modified Bessel function in two ways:

(i) According to I0ðxÞ ’ expðx2=4Þ when x is sufficiently

small. Then

PðR;Rd;Ra; ’j’dÞ ’ ½2�I0ðGUÞ�
�1 exp½GU cosð’� ’dÞ�; ð78Þ

where
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GU ¼
21=2RRd

�2
PhD

1�
R2

a

2�2
PhD

� �
: ð79Þ

The concentration parameter GU is not very useful because

the truncated expansion of the modified Bessel function holds

only if R and Rd are both sufficiently small. Since Ra is also

small by hypothesis, (79) cannot provide sufficiently reliable

phase estimates.

(ii) According to equation (73), we then obtain

Pð’jR;Rd;Ra; ’dÞ ’ ½2�I0ðSUÞ�
�1 exp½SU cosð’� ’dÞ�; ð80Þ

where

SU ¼
21=2RRd

�2
PhD

� LU ð81Þ

and

D1ðLUÞ ¼ D1

21=2RdRa

�2
PhD

� �
D1

RRa

�2
PhD

� �
: ð82Þ

If R and Rd are sufficiently large and Ra is sufficiently small

then SU is positive: in this case ’ is expected to be close to ’d

with reliability factor given by SU. Distribution (80) cannot

provide reliable estimates of the type ’ ’ ’d þ �: indeed that

would require that R and Rd are small and Ra sufficiently large.

This last condition is in conflict with the hypothesis that Ra is

small.

While in SIR–MIR techniques the conditional distribution

of ’d is never considered because it is very similar to that of

the native protein (indeed the scattering powers of the heavy-

atom substructure are negligible with respect to that of the

protein), in PhD it should be explored because target and ancil

structures may have comparable scattering powers. Let us first

assume that the condition ’ ’ ’d is satisfied (practically, we

are then studying the case of {U} reflections). Then

Pð’djR;Rd;Ra; ’aÞ ’ ½2�I0ðGdÞ�
�1 exp½Gd cosð’� ’aÞ� ð83Þ

is obtained, where

Gd ¼
ð21=2Rd � RÞRa

�2
PhD

: ð84Þ

Owing to the assumption ’ ’ ’d the concentration parameter

Gd coincides with the parameter G given by equation (27):

accordingly, ’ and ’d are equally distributed.

Let us now estimate ’d given R;Rd;Ra; ’a, whatever the ’
value (that is more appropriate for {I} or {P} reflections). To do

that we reconsider the distribution (68) and we derive the

marginal probability distribution

PðR;Rd; ’djRa; ’aÞ

’ C exp
21=2

�2
PhD

½RdRa cosð’d � ’aÞ�


 �
I0

RRcalc

�2
PhD

� �
; ð85Þ

where

R2
calc ¼ 2R2

d þ R2
a � 2ð21=2ÞRdRa cosð’d � ’aÞ:

If approximation (73) is introduced into equation (85) the

conditional distribution (86) is obtained:

Pð’djR;Rd;Ra; ’aÞ ’ ½2�I0ðSdÞ�
�1 exp½Sd cosð’d � ’aÞ�; ð86Þ

where Sd ¼ ð2
1=2RdRaÞ=ð�

2
PhDÞ þ Ld and Ld is now defined by

D1ðLdÞ ¼ D1

21=2RdR

�2
PhD

� �
D1

RaR

�2
PhD

� �
: ð87Þ

Let us now compare distributions (84) and (87). They do not

coincide: indeed according to equation (87) ’d ’ ’a if

Rd >R=21=2, ’d ’ ’a þ � if Rd <R=21=2. According to equa-

tion (87) ’d ’ ’a is always supported, no matter the values of

Rd and R.

It is useful to notice that all the Figs. 2–7 support the indi-

cations of equation (87). A more explicit example showing

that the expectation ’d ’ ’a is always more probable than

’d ’ ’a þ � is illustrated in Fig. 8, for the most unfavourable

case |F| 	 |Fa|. In Fig. 8 we assume ’a ¼ 0, but any different

choice may be made without any change in the conclusions.

Let us suppose that ’ and ’a are independent variables: they

are therefore uncorrelated and ’ spans the circle in a uniform

way [a reasonable assumption, owing to the fact that �aðrÞ

is randomly fixed]. The probabilities that ’d ’ ’a or

’d ’ ’a þ � are then proportional to the lengths of the two

arcs AB, one at the right and the other at the left of the

imaginary axis, respectively. Accordingly ’d ’ ’a is always the

most probable phase relationship, unless |Fa | = 0: only in this

case is ’d uniformly distributed on the trigonometric circle.

APPENDIX C
We stated in the main text that, when no model is available

for the target structure, it is difficult, at an early step of an

EDM procedure and for a given reflection (hkl), to decide if

for the jth phantom derivative the sign of sin½’dinvðjÞ � ’aðjÞ�

coincides with the true sign of sin½’dðjÞ � ’aðjÞ� or with its

opposite. We also suggested in x6 that, under suitable condi-
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Figure 8
Case Fa� F. The probability that cosð’d � ’aÞ> 0 is proportional to the
ratio ‘length of the arc AB in bold/length of the circle’.



tions, it is possible to establish whether two different deriva-

tives coherently suggest the same (no matter if wrong or

correct) enantiomorph for a given (hkl) reflection. To deal

with this question we observe that if Fa j is the complex

conjugate of Faj, then

FdðjÞ 
 �FFaðjÞ ¼ ½FaðjÞ þ F� 
 �FFaðjÞ

¼ jFaðjÞj
2
þ jFaðjÞFj expfi½’� ’aðjÞ�g

from which

jFdðjÞFaðjÞj cos½’dðjÞ � ’aðjÞ� ¼ jFaðjÞj
2
þ jFaðjÞFj cos½’� ’aðjÞ�

ð88Þ

and

jFdðjÞFaðjÞj sin½ð’dðjÞ � ’aðjÞ� ¼ jFaðjÞFj sin½’� ’aðjÞ�: ð89Þ

From (89) we obtain

sin½’dðjÞ � ’aðjÞ� � sin½’� ’aðjÞ�> 0: ð90Þ

For a given reflection (hkl) relationship (90) states that, if the

correct enantiomorph is obtained, the two sines must have the

same sign. Unfortunately the value of ’ is unknown and

therefore (90) cannot be applied in practice, unless the space

group of the ancil structure is a centric supergroup of the

acentric space group of the target. In this case (90) reduces to

sin½’dðjÞ � ’aðjÞ� sin ’� cos ’aðjÞ> 0:

For a given (hkl) the sign of sin ’ is an unknown but fixed

parameter for each derivative. Therefore in an EDM proce-

dure all the derivatives will coherently define the same

enantiomorph (wrong or correct) if
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Figure 9
Diagrams for four derivatives with |Fa (j) | > |F | are illustrated in (a)–(d). The correct enantiomorphs are indicated by unbroken lines, the wrong ones by
broken lines. In each case, given the correct enantiomorph, one has to choose between Fd1 and Fd2, and therefore between F1 and F2. The correct target
structure factor in all the four diagrams is indicated by F. In all the four cases the correct enantiomorph corresponds to the positive value of
EN ¼ sinð’d � ’aÞ sin ’a.



ENC ¼ sin½’dinvðjÞ � ’aðjÞ� � cos ’aðjÞ

¼ sin ’dinvðjÞcos2’aðjÞ ¼ sin ’dinvðjÞ

has the same sign for each derivative.

In order to find a criterion valid for the case in which the

ancil electron density satisfies the same space group of the

target structure, let us consider, for a fixed reflection ðhklÞ, the

four diagrams in Fig. 9. Each diagram corresponds to a

different derivative. We assumed for all the four cases that

|Fa(j)| > |F|, but the conclusions will also be valid if for some or

for all the derivatives |Fa(j)| < |F|. In Fig. 9(a) we will suppose

that the correct enantiomorph is indicated by unbroken lines,

while the broken lines correspond to the wrong one. The same

notation is adopted in Figs. 9(b)–9(d). By hypothesis the

condition characterizing the correct target enantiomorph for

all the four depicted cases is the positive value of

EN ¼ sinð’d � ’aÞ sin ’a;

the wrong one by a negative value of EN. We then assume EN

as a coherence criterion: for a given reflection (hkl) the correct

enantiomorph is coherently defined by all the derivatives if

EN has the same sign for all of them. As for centric ancil

structures, in practical applications we cannot guess whether

EN > 0 defines for a given (hkl) reflection the correct or the

wrong enantiomorph, but the criterion may help us to decide if

the various derivatives provide for ’d the same or different

enantiomorphs.

APPENDIX D
In the MIR case the enantiomorph problem is automatically

solved by the combined use of more derivatives; in the MPhD

approach the solution of the problem is more difficult, parti-

cularly in the initial step of the phasing process where we

are obliged to assume ’d ¼ ’a and amplitudes given by (15).

In the absence of observed derivative amplitudes the use

of equation (15) in EDM procedures may drive the initial

derivative model towards �dðrÞ ¼ �aðrÞ þ �ðrÞ, or towards
~��dðrÞ ¼ �aðrÞ þ �ð�rÞ (see x6). Similar problems may be

encountered when EDM techniques are applied by using

hybrid Fourier syntheses (see x8). In this Appendix we treat

the following problem: in the initial MPhD steps it may occur

that, for the same reflection (hkl), for one derivative the EDM

procedure suggests sin½’dinvðjÞ � ’dðjÞ� values with sign oppo-

site to that necessary for making the derivative phase closer to

the true one, and for another derivative the sign may be the

same. An algorithm for checking how coherent are the deri-

vatives in suggesting the same sign for sin½’dinvðjÞ � ’dðjÞ�, and

for eventually improving their coherence, is here described.

For simplicity, let us first consider a two derivative case,

under the assumption that, for a target structure with NREF

observed reflections, EDM techniques are able to estimate the

correct enantiomorph with a frequency g > 0.5 for each of the

two derivative structures. For the moment we will consider g

equal for all the reflections and for all the derivatives: in

reality, it depends on the specific reflection and on the specific

jth derivative, so that g should be replaced by gj(hkl) to make

more evident the dependence. This generalization is not

included here: presently the approximation g = const. will be

assumed. In the first steps of the MPhD approach g is not

expected to be larger than 0.55–0.60. Consider first Figs. 7(a)

and 7(b), obtained when the ancil structure symmetry

complies with a centric supergroup of the target group. Three

alternatives may occur at a given EDM cycle for the selected

(hkl) reflection:

(i) The correct enantiomorph is simultaneously (and inde-

pendently) defined in both the figures. The occurrence of this

event will be proportional to g2.

(ii) The false enantiomorph is simultaneously suggested in

both the figures. The occurrence of this event is proportional

to (1 � g)2.

(iii) Two opposite enantiomorphs are suggested: it may

occur two times, the first when the correct enantiomorph is

found in Fig. 7(a), and the wrong one is found in Fig. 7(b), the

second time when the indications are reversed. The overall

frequency is 2g� ð1� gÞ.

The cases (i) and (ii) may be separated from the cases (iii) if

it is possible to define a criterion, say ENC (see Appendix C),

which is positive for coherent enantiomorph indications, and

negative for contradictory enantiomorph indications. In the

case illustrated in Fig. 7 ENC = sin ’d. However, in practical

applications it is impossible to distinguish between (i) and (ii):

thus the reflections belonging to (i) or (ii) may be regrouped in

a Group to which NREF[g2 + (1 � g)2] reflections are

expected to belong. For NREF� g2 of them the correct

enantiomorph is probably chosen, for NREF� ð1� gÞ2 the

wrong enantiomorph is probably indicated.

As a numerical example, let us suppose that NREF = 30 000

and g = 0.6. In accordance with definitions, it may be expected

that for each derivative the EDM procedures will indicate

the correct enantiomorph for about NREF� g = 18 000

reflections. A coherent enantiomorph will be indicated for

NREF[g2 + (1 � g)2] = 15 600 reflections, and for NREF� g2

= 10 800 of them the correct enantiomorph is expected to be

suggested. The frequency of the correct enantiomorph over

the 15 600 selected reflections is g2/[g2 + (1 � g)2] = 0.69,

instead of the starting 0.60 frequency. The gain of information

is however compensated by the loss of information on the

remaining 14 400 reflections, for which the probability of

finding the correct enantiomorph is 0.50.

We can now extend the above observations to the general

case of n derivatives. We will indicate by c the case in which a

derivative provides the correct enantiomorph and by w the

opposite case. We will distinguish between:

Case 0: denoted as cn. All the n derivatives suggest the

correct enantiomorph (we have here zero contrasting indica-

tions: that explains the notation). The number of reflections

falling in this case is expected to be NREF� gn.

Case 1: denoted cn�1w. All the derivatives except one

suggest a coherent enantiomorph. This case includes all the

permutations wcc . . . c; cwc . . . c; ccc . . . w. Their number is

equal to n, which is the number of permutations of n elements,

one of which is repeated one time and the second repeated

(n� 1) times. We regroup all the permutations in a unique
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case. The reflections belonging to it are expected to be

NREF� n� gn�1ð1� gÞ.

Case 2: denoted cn�2w2. All the derivatives except two

suggest a coherent enantiomorph. This case includes all the

permutations wwcc . . . c;wcwc . . . c etc. Their number is equal

to n!=½2!ðn� 2Þ!�, which is the number of permutations of n

elements, one of which is repeated two times and the second

repeated (n� 2) times. The number of reflections falling in

this Case is NREFfn!=½2!ðn� 2Þ!�ggn�2ð1� gÞ2.

Case n � 2: denoted as c2wn�2. The number of reflections

belonging to it is NREFfn!=½2!ðn� 2Þ!�gg2ð1� gÞ
n�2.

Case n � 1: denoted as cwn�1. The number of reflections

belonging to it is NREF� n� gð1� gÞ
n�1.

Case n: denoted as wn. The number of reflections belonging

to it is NREF(1 � g)n.

The number of reflections belonging to the Case k is

therefore

NREF
n!

k!ðn� kÞ!
gkð1� gÞn�k; ð91Þ

say, the number of reflections multiplied by the binomial

distribution for n Bernoulli trials. Analogously, the number of

reflections belonging to the Case n � k will be

NREF
n!

k!ðn� kÞ!
gn�kð1� gÞk: ð92Þ

As stated before, we are unable to experimentally distinguish

the Case k from the Case n � k. Thus we will regroup them

together in the Group k, whose occurrence frequency is

OCCðkÞ ¼
n!

k!ðn� kÞ!
t½gn�k

ð1� gÞ
k
þ gk
ð1� gÞ

n�k
�; ð93Þ

where k goes from 0 to n/2 if n is even, from 0 to (n � 1)/2 if n

is odd. t = 1 when k 6¼ (n� k) and t = 1/2 when k = (n� k). The

number of reflections belonging to the Group k is

REFðkÞ ¼ NREF�OCCðkÞ: ð94Þ

The frequency of finding the correct enantiomorph among the

reflections belonging to the Group k is expected to be the

ratio:

ENANTðkÞ

¼
½ðn� kÞgn�kð1� gÞ

k
þ kgkð1� gÞ

n�k
�

½ðn� kÞgkð1� gÞ
n�k
þ kgn�kð1� gÞ

k
� þ ½kgkð1� gÞ

n�k
þ ðn� kÞgn�kð1� gÞ

k
�

¼
½ðn� kÞgn�kð1� gÞ

k
þ kgkð1� gÞ

n�k
�

n½gkð1� gÞ
n�k
þ gn�kð1� gÞ

k
�

: ð95Þ

At numerator and denominator the coefficients k and n � k

correspond to the number of c symbols in each permutation.

Let us now consider, as a numerical example, the three

derivative cases illustrated in Fig. 7. The possible Cases are

four, defined as: Case 0, permutations of type ccc; Case 1,

permutations of type ccw, cwc, wcc; Case 2, permutations of

type wwc, wcw, cww; Case 3, permutations of type www.

The Cases 0 and 3 may be regrouped in the Group 0

because, for each reflection belonging to it, ENC > 0 or ENC <

0 for all the three derivatives. The corresponding expected

number of reflections is

REFð0Þ ¼ NREF� ½g3
þ ð1� gÞ

3
� ¼ 8400;

6480 are expected to have the correct enantiomorph, 1920

reflections are expected to have the wrong one. For the subset

of the 8400 reflections selected above the probability of

finding the correct enantiomorph is 0.77, much larger than g.

The Cases 1 and 2 are regrouped in the Group 1. The

corresponding expected number of reflections is

REFð1Þ ¼ NREF� 3½g2
ð1� gÞ þ gð1� gÞ2� ¼ 21 600;

ENANTð1Þ ¼ ½2g2
ð1� gÞ þ gð1� gÞ

2
�=½3g2

ð1� gÞ þ 3gð1� gÞ
2
�

¼ 0:522:

Again, the higher probability of defining the correct enan-

tiomorph for the Group 0 has its counterpart in the worst (less

than 0.6) probability for the Group 1.

How to exploit the above theoretical considerations in

order to improve the coherence and the correctness of the

enantiomorph indications, as available at a given step of an

EDM procedure? Let us consider, for an n derivative case, the

Group j (with j 6¼ 0): for a certain number of reflections the

correct enantiomorph is coherently defined by n � j deriva-

tives in opposition to the enantiomorph suggested by j deri-

vatives. If n � j is sufficiently larger than j, then the n � j

enantiomorph indications will have a large probability of

being true. It is then advisable to replace the original enan-

tiomorph defined for the j derivatives by the enantiomorph

suggested by the n � j derivatives.

APPENDIX E
The complete freedom in choosing the ancil structures

allows PhD to profit from special relationships between two

ancil structures, because they may generate additional

constraints. For example, two ancils might have some atomic

positions in common while the rest of the two structures is

randomly fixed. This condition may help to fix the enantio-

morph during PhD phasing.

Let us briefly consider the case in which �aðrÞ is the electron

density of the first ancil and �að�rÞ is the density of the second

ancil. Then

jFdð1Þj exp½i’dð1Þ� ¼ jFj expði’Þ þ jFað1Þj exp½i’að1Þ� ð96Þ

and

jFdð2Þj exp½i’dð2Þ� ¼ jFj expði’Þ þ jFað1Þj exp½�i’að1Þ�; ð97Þ

where jFdð1Þj, ’dð1Þ are, respectively, amplitude and phase

corresponding to the first derivative and jFdð2Þj, ’dð2Þ are,

respectively, amplitude and phase corresponding to the second

derivative. From equations (96) and (97) we obtain

jFdð1Þj
2
¼ jFað1Þj

2
þ jFj2 þ 2jFað1ÞFj cos½’að1Þ � ’�

and

jFdð2Þj
2
¼ jFað1Þj

2
þ jFj2 þ 2jFað1ÞFj cos½’að1Þ þ ’�;

from which

jFdð1Þj
2
� jFdð2Þj

2
¼ 4jFað1ÞFj sin ’að1Þ sin ’:
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The two derivatives will have the same amplitude only if

’ ¼ 0; �. Four additional relationships arise:

jFdð1Þj cos ’dð1Þ þ jFdð2Þj cos ’dð2Þ

¼ 2jFj cos ’þ 2jFað1Þj cos ’að1Þ; ð98Þ

jFdð1Þj cos ’dð1Þ � jFdð2Þj cos ’dð2Þ ¼ 0; ð99Þ

jFdð1Þj sin ’dð1Þ þ jFdð2Þj sin ’dð2Þ ¼ 2jFj sin ’; ð100Þ

jFdð1Þj sin ’dð1Þ � jFdð2Þj sin ’dð2Þ ¼ 2jFað1Þj sin ’að1Þ: ð101Þ

Their main advantages are the following:

Equation (99) establishes a restraint on the values of jFdð2Þj

and ’dð2Þ when jFdð1Þj and ’dð1Þ have been estimated. In

particular cos½’dð2Þ� and cos½’dð1Þ� must have the same sign.

That is, if the two derivative phases, once subjected to EDM

techniques, independently migrate so that the two cosines

have opposite signs, then the EDM indication violates the

expected relationship.

When ’a is occasionally close to 0 or �, sin ’dð1Þ and

sin ’dð2Þ must have the same sign [see equation (101)]. Again,

the expectation is violated if an EDM procedure ends with

opposite signs for the two sines. It may also be noticed that if

sin ’dð1Þ and sin ’dð2Þ have the same sign, that is also the sign

of sin ’, according to equation (100).
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